Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressures

1968 ◽  
Vol 90 (4) ◽  
pp. 547-552 ◽  
Author(s):  
E. K. Levy

A one-dimensional analysis of a compressible vapor flowing within the evaporator section of a heat pipe is presented. Comparisons between the theoretical results and existing heat pipe data show that the presence of gasdynamic choking can limit the heat transfer capacity of a heat pipe operating at sufficiently low vapor pressures.

2010 ◽  
Vol 29-32 ◽  
pp. 1695-1700
Author(s):  
Shi Gang Wang ◽  
Xi Bing Li ◽  
Bai Rui Tao ◽  
Hong Xia Zhang

Through combination of experimental investigation with theoretical optimum design, this paper determined the crucial factors in affecting the heat transfer capacity in micro heat pipes with a trapezium-grooved wick structure are capillary limit and entrainment limit, and verified the validity of the heat transfer models thus built.


2013 ◽  
Vol 711 ◽  
pp. 223-228 ◽  
Author(s):  
Shen Chun Wu ◽  
Jhih Huang Gao ◽  
Zih Yan Huang ◽  
Dawn Wang ◽  
Cho Jeng Huang ◽  
...  

This study investigates the effects of increasing the evaporating area of wick in a loop heat pipe (LHP). This work attempts to improve the performance of the loop heat pipe by increasing the number of grooves and thereby the surface area of the wick. The number of grooves is increased from eight to twelve. Experimental results show that increasing the number of grooves not only increases the surface area of the wick but also enhances LHP performance. When the evaporating surface area increases by 50%, which corresponds to increasing the number of grooves from eight to twelve, the heat transfer capacity increases from 310W to 470W and the thermal resistance is reduced from 0.21°C/W to 0.17°C/W. According to preliminary measurements, increasing the number of grooves in the loop heat pipe is highly promising for improving the heat transfer performance.


2000 ◽  
Vol 123 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Jian Ling ◽  
Yiding Cao ◽  
Alex P. Lopez

A radially rotating miniature high-temperature heat pipe employs centrifugal force to return the condensate in the condenser section to the evaporator section. The heat pipe has a simple structure, very high effective thermal conductance and heat transfer capacity, and can work in hostile high-temperature environments. In this research, a high-speed rotating test apparatus and data acquisition system for radially rotating miniature high-temperature heat pipes are established. Extensive experimental tests on two heat pipes with different dimensions are performed, and various effects of influential parameters on the performance characteristics of the heat pipes are investigated. The ranges of the important parameters covered in the current experiments are: 470⩽ω2Za¯/g⩽1881; 47 W⩽Q⩽325W; di=1.5 and 2 mm; and 1.05×10−3m3/s⩽W⩽13.4×10−3m3/s. The experimental data prove that the radially rotating miniature high-temperature heat pipe has a high effective thermal conductance, which is 60–100 times higher than the thermal conductivity of copper, and a large heat transfer capacity that is more than 300 W. Therefore, the heat pipe appears to be feasible for cooling high-temperature gas turbine components.


Doklady BGUIR ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 5-12
Author(s):  
L. P. Pilinevich ◽  
M. V. Tumilovich ◽  
A. G. Kravtsov ◽  
D. M. Rumiantsav ◽  
K. V. Hryb

Heat pipes are designed to effective removing heat from heating elements and reducing the temperature of various devices. Heat pipes with capillary porous structures are designed to operate under conditions of unfavorable gravity forces. Their main advantages are their high heat transfer capacity, as well as the ability to retain the coolant in a capillary-porous structure under dynamic power loads. The purpose of this work is to study the process of obtaining capillary-porous materials from metal powders for heat pipes with increased efficiency of using the vibration molding method. The article substantiates the relevance of creating heat pipes from metal powders. The information about the influence of the contact angle, surface tension and capillary pressure on the heat transfer capacity of a heat pipe is provided. It is shown that for the efficient operation of the heat pipe it is necessary to create such a capillary structure of the porous material, which could simultaneously provide a high speed of movement of the coolant and its rise to a given height. The above requirements can be satisfied by creating a capillary structure using powder metallurgy methods by optimizing the distribution of pore sizes. In this case, the most promising method seems to be the method of molding when applying a vibration to a mold with a powder. It is possible to obtain the required pore distribution in this way by choosing the correct particle size, shape and vibration parameters. This makes it possible to ensure the packing of particles in size, which affects their packing density, pore size, tortuosity and length of pore channels. The distribution of the maximum pore sizes over the thickness of the samples obtained from powders of various granulometric composition with the use of vibration has been investigated. As a result, a process was developed for obtaining capillary structures by the method of vibration molding of metal powders, depending on the size of the powder particles, the amplitude and frequency of vibration. It is shown that this method can provide a given pore distribution of the capillary structure for heat pipes, which makes it possible to increase their heat transfer capacity.


Author(s):  
Nikita Yu. Sokolov ◽  
Vladimir A. Kulagin ◽  
Dmitry A. Nesterov

We report on the results of optimizing a single flat heat pipe into an arrangement of heat pipes. A comparison is drawn at the same temperatures and occupied volumes and for a specific maximum temperature of radio-electronic devices. The end result of our studies is that the limiting heat transfer capacity has been found for a single heat pipe and two- and three-level heat pipe assemblies with various heat transfer media. Versatility of the mathematical model enhanced by the optimization method has been proved


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


Author(s):  
Nannan Zhao ◽  
Benwei Fu ◽  
Hongbin Ma ◽  
Fengmin Su

The heat transport capability in an oscillating heat pipe (OHP) significantly depends on the oscillating frequency. An external frequency directly affects the natural frequency in the system. In this investigation, the ultrasound sound effect on the heat transport capability in an OHP was conducted with focus on the ultrasonic frequency effect on the oscillating motion and heat transfer capacity in an OHP. The ultrasonic sound was applied to the evaporating section of the OHP by using the electrically-controlled piezoelectric ceramics. The heat pipe was tested with or without the ultrasonic sound with different frequencies. In addition, the effects of operating temperature, heat load from 25 W to 150 W were investigated. The experimental results demonstrate that the heat transfer capacity enhancement of the OHP depends on the frequency of the ultrasound field, and there exists an optimum combination of the frequencies which will lead to the largest enhancement of the heat transfer capacity of the OHP.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012088
Author(s):  
A. A. Litvintceva ◽  
N. I. Volkov ◽  
N. I. Vorogushina ◽  
V. A. Moskovskikh ◽  
V. V. Cheverda

Abstract Heat pipes are a good solution for temperature stabilization, for example, of microelectronics, because these kinds of systems are without any moving parts. Experimental research of the effect of operating parameters on the heat transfer in a cylindrical heat pipe has been conducted. The effect of the working fluid properties and the porous layer thickness on the heat flux and temperature difference in the heat pipe has been investigated. The temperature field of the heat pipe has been investigated using the IR-camera and K-type thermocouples. The data obtained by IR-camera and K-type thermocouples have been compared. It is demonstrated the power transferred from the evaporator to the condenser is a linear function of the temperature difference between them.


1947 ◽  
Vol 14 (4) ◽  
pp. A317-A336 ◽  
Author(s):  
Ascher H. Shapiro ◽  
W. R. Hawthorne

Abstract Recent developments in the fields of propulsion, flow machinery, and high-speed flight have emphasized the need for an improved understanding of the characteristics of compressible flow. A one-dimensional analysis for flow without shocks is presented which takes into account the simultaneous effects of area change, wall friction, drag of internal bodies, external heat exchange, chemical reaction, change of phase, injection of gases, and changes in molecular weight and specific heat. The method of selecting independent and dependent variables, and the organization of the working equations, leads, it is believed, to a better understanding of the influence of the foregoing effects, and also simplifies greatly the analytical treatment of particular problems. Examples are given first of several simple types of flow, including (a) area change only; (b) heat transfer only; (c) wall friction only; and (d) gas injection only. In addition, examples of flow with combined effects are given, including (a) simultaneous friction and area change; (b) simultaneous friction and heat transfer; and (c) simultaneous liquid injection and evaporation. A one-dimensional analysis for flow through a discontinuity is presented, allowing for energy, shock, drag, and gas-injection effects, and for changes in gas properties. This analysis is applicable to such processes as: (a) the adiabatic normal shock; (b) combustion; (c) moisture condensation shocks; and (d) steady explosion waves.


Author(s):  
Changwu Xiong ◽  
Lizhan Bai ◽  
Hechao Li ◽  
Yuandong Guo ◽  
Yating Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document