scholarly journals Soil properties and infiltration rate in sago palm (Metroxylon sago) forest in Rongkong Watershed South Sulawesi

2021 ◽  
Vol 807 (3) ◽  
pp. 032053
Author(s):  
O Nelsi ◽  
U Arsyad ◽  
B Bachtiar ◽  
D A Rampisela
2021 ◽  
Vol 52 (2) ◽  
pp. 461-470
Author(s):  
Tariq & et al.

The study was conducted to examine the effect of surface burn severity (Moderate, Severe and Unburned) of wheat straw on soil properties. The results showed statistical differences in some soil physical, chemical and biological properties. Bulk density and field capacity increased statistically by the severity of fire; however, porosity and infiltration rate were statistically lower in sever burned plot when compared to unburned plot. The chemical properties, soil organic matter (SOM), P, Ca, S, Cl, K, Mo, Fe and As were not affected by the fire. The pH value was increased slightly by increasing the fire severity, while, EC was decreased when compared with the unburned plot. It was found a statistical reduction in the number of bacterial and fungal cells per gram soil in the burned plots. A moderate and severe fire reduced seed germination percentage significantly. This finding suggests that fire severity may destruct the biological, physical and some of the chemical properties of the soil, and this may impact negatively on plant growth in the next growing season.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
OMBIR SINGH ◽  
MOHAN SINGH ◽  
ROHITASAV SINGH

A field experiment was conducted at the Crop Research Centre of GBPUA and T, Pantnagar, Udham Singh Nagar continuous two years to study the productivity, soil properties, and economics of wheat (Triticum aestivum L.) under different wheat establishment methods in main plots and seven weed management practices in sub plots, replicated thrice in a split plot design. Zero tilled wheat exhibited more number of spikes m-2 and more number of grains per spike was significantly higher than reduced and conventional tillage. The zero tilled wheat yielded 12.35 and 3.66 per cent higher over reduced and conventional tillage during Ist year and 11.99 and 3.09 per cent during IInd year. The bulk density of soil was higher under zero tillage than that of other tillage. The infiltration rate was significantly greater with ZT than RT and CT. The highest grain yield was obtained in two hand weedings done at 30 and 60 DAS and was at par with Isoproturon 1.0 kg ha-1 + Metsulfuron methyl 4 g ha-1 at 30 DAS and Clodinafop – Propargyl 60 g ha-1 at 30 DAS fb. Metsulfuron methyl 4 g ha-1 at 37 DAS.


Author(s):  
E.O. Ogundipe

Soil properties are important to the development of agricultural crops. This study determined some selected soil properties of a drip irrigated tomato (Lycopersicon esculentum M.) field at different moisture regime in South-Western Nigeria. The experiment was carried out using Randomized Complete Block Design with frequency and depth of irrigation application as the main plot and sub-plot, respectively in three replicates. Three frequencies (7, 5 and 3 days) and three depths equivalent to 100, 75 and 50% of water requirement were used. Undisturbed and disturbed soil samples were collected from 0-5, 5-10, 10-20 and 20-30 cm soil layers for the determination of some soil properties (soil texture, organic matter content, bulk density, infiltration rate and saturated hydraulic conductivity) were determined using standard formulae. Soil Water Content (SWC) monitoring was conducted every two days using a gravimetric technique. The soil texture was sandy loam for all the soil depths; average value of soil organic matter was highest (1.8%) in the 0-5 cm surface layer and decreased with soil depth; the soil bulk density value before and after irrigation experiment ranged from 1.48 and 1.73 g/cm3 and 1.5 and 1.76 g/cm3, respectively; there was a rapid reduction in the initial infiltration and final infiltration rate. Saturated hydraulic conductivity show similar trend although the 20-30 cm layer had the lowest value (50.84 mm/h); the SWC affect bulk density during the growing season. The study showed that soil properties especially bulk density and organic matter content affect irrigation water movement at different depth..


2021 ◽  
Author(s):  
Monica Corti ◽  
Andrea Abbate ◽  
Vladislav Ivanov ◽  
Monica Papini ◽  
Laura Longoni

<p>Wildfire events have severe effects over mountain environments, changing dramatically the local terrain hydrogeological conditions and frequently affecting slope stability. Besides burning vegetation, wildfires induce a modification on soil properties that could result in a decreased capacity of infiltration. This leads to an increase of erosion and, potentially, of the related geohazards, such as flash flooding and debris flows, in the vicinity of the affected sites.</p><p>Past studies found that this reduced infiltration rate changes over time and the original hydrogeological soil properties are expected to recover in as long as 10 years after the wildfire event, depending on the environmental characteristics and on the soil properties of the site.</p><p>Our work aims to investigate the impact of a wildfire on the infiltration conditions of a slope located in the Southern Alps, considering as a case study a wildfire event occurred in Sorico (CO) in December 2018.</p><p>The effects of the wildfire on the infiltration rates and the subsequent recovery of the original hydrogeological properties were evaluated over the span of more than two years after the event. Infiltration tests were performed both within the most affected area as well as in the nearest unburnt area. Results were then correlated with precipitation and satellite imagery data in order to retrieve a recovery factor, necessary for the calibration of a simple 1D hydrogeological model.</p>


Author(s):  
Yinghu Zhang ◽  
Jinchi Zhang ◽  
Zhenming Zhang ◽  
Mingxiang Zhang

Soil properties have a significant influence on solutes redistribution in the soil vadose zones. The aim of this study was to assess the relevance of soil properties for solute transport characteristics in degraded wetland soils using 72 undisturbed soil columns from two experimental fields located in Robinia pseudoacacia (CH) and Tamarix chinensis (CL) communities. Combining soil column tracer experiments, all experiments were conducted under the same initial and boundary conditions using Brilliant Blue FCF as a conservative tracer. Solute transport characteristics were described by four measures of dye solution steady infiltration rate of effluents, dye solution concentration of effluents, soil column dye staining patterns, and cumulative dye solution leaching. Numerical modeling by the dual-permeability model in HYDRUS-1D was used to simulate the proportion of cumulative dye solution leaching from soil macropore flow. This study showed that basic soil properties exhibited a significant difference at CH site and at CL site. Dye solution steady infiltration rate of effluents at CH site decreased with soil depth, but increased at first and then decreased with soil depth at CL site. Dye solution concentration of effluents both at CH site and at CL site decreased nonlinearly with soil depth. Soil column dye staining patterns were significantly different among different soil locations, indicating the largest dark blue staining domains from soil depth of 0-10 cm at CH site and 20-40 cm at CL site. The proportion of cumulative dye solution leaching from soil macropore flow was from 37.6 to 61.1% at CH site, whereas from 0 to 99.9% at CL site. Basic soil properties played inconsistent roles in solute transport characteristics. The understanding of soil properties and its correlation with solute transport characteristics is the first step for degraded wetland restoration and development. Some alternative solutions of wetland restoration are proposed for managers.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Aruna Olasekan Adekiya ◽  
Taiwo Michael Agbede ◽  
Adeniyi Olayanju ◽  
Wutem Sunny Ejue ◽  
Timothy A. Adekanye ◽  
...  

Among agricultural soil amendment that can enhance crop productivity and soil sustainability is biochar. Hence, two-year field experiments were conducted on a sandy loam Alfisol at Owo, southwest Nigeria, to evaluate the effects of biochar produced from hardwood on soil physical and chemical characteristics, erosion potential, and cocoyam (Xanthosoma sagittifolium (L.) Schott) yield. The study was a 2 × 4 factorial experiment with two years (2017 and 2018) and four biochar levels (0 (control), 10, 20, and 30 t ha−1). The treatments were laid out in a randomized complete block design with three replications. Results indicated that biochar application significantly in both years improved yield of cocoyam and soil physical (bulk density, porosity, moisture content, mean weight diameter (MWD) of soil aggregates, dispersion ratio, and infiltration rate) and chemical (soil organic matter, pH, N, P, K, Ca, Mg, and CEC) properties and erosion resistance. Soil characteristics and cocoyam yield improved with level of biochar from 0–30 t ha−1. When 2018 is compared with 2017 in term of soil loss, in the amended plots, 2018 reduced soil loss by 7.4, 20, and 73.5%, respectively, for 10, 20, and 30 t ha−1biochar, whereas there was an increase of 2.7% soil loss in the control plot in 2018 compared with 2017. Therefore, application rate of 30 t ha−1 biochar is considered as suitable for severely degraded soil because this application rate efficiently improves cocoyam yield and soil properties and reduces soil loss.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2550
Author(s):  
Andrej Hrabovský ◽  
Pavel Dlapa ◽  
Artemi Cerdà ◽  
Jozef Kollár

Vineyards are a 7000-year-old land-use tradition and both management and abandonment have result in altered soil properties. These have a great effect on water resources and soil services, and this inspired our investigation into the effects of land-use and land-use change on soils in the Modra wine-growing region in South-western Slovakia. Ten topsoil samples were taken at each of the seven research sites (n = 70) on granite parent material in cultivated and afforested vineyards and original forest soils. Laboratory analyses included determination of soil texture, organic carbon content, soil pH, and water repellency. This was supplemented by infiltration measurements under near-saturated conditions at the vineyard and afforested study sites. Studied soils have a low clay content and a high proportion of sand. The vineyard soils have significantly higher pH than the forest and afforested soils because the naturally acidic soils have been limed. The forest and afforested soils have similar properties, with higher organic carbon content. This makes them strongly to extremely water repellent and contrasts sharply with the wettability of cultivated vineyard soils. One afforested site, however, was less acidic and therefore was considered transitional between forest and vineyard soils. Our infiltration measurements established the influence of soil water repellency on the infiltration process, and our results highlighted that the infiltration rate in the vineyard soils was significantly higher than in afforested soils. The infiltration rate also gradually increased over time in afforested soils due to decreasing water repellency. Physically impossible negative sorptivity values in afforested soils were noted because of changes in water repellency during the infiltration process. Finally, we conclude that soil afforestation results in increased soil water repellency and a subsequent reduction in the infiltration rate at the matrix scale.


2010 ◽  
Vol 24 (11) ◽  
pp. 2781-2793 ◽  
Author(s):  
Reza Ghazavi ◽  
Abbasali Vali ◽  
Saeid Eslamian

Sign in / Sign up

Export Citation Format

Share Document