scholarly journals A method to minimize the intake of exhaust air in a climate control system in livestock premises

2021 ◽  
Vol 845 (1) ◽  
pp. 012132
Author(s):  
IY Ignatkin ◽  
A V Arkhiptsev ◽  
V I Stiazhkin ◽  
E V Mashoshina

Abstract This paper presents a method of aerodynamic separation of supply-exhaust airflows in a supply and exhaust climate control unit for livestock facilities in order to minimize back suction. The air removed from livestock buildings contains a large amount of moisture, carbon dioxide, ammonia, hydrogen sulfide and other harmful gases and in mine units, the outlet and inlet openings are located close enough, which is why exhaust air can be sucked together with the supply air. The paper presents a set of measures to minimize back suction. In particular, the distance between the supply and exhaust openings is substantiated. Moreover, it was proposed to give an additional velocity to the exhaust air due to the energy of natural traction. In order to solve this problem, a nozzle with a convergence angle of 45 ° was installed at the outlet of the unit. The effectiveness of the proposed solution was tested experimentally and it was found that when the inlet and outlet openings were located at a distance of more than 0.5 m, as well as when the exhaust jet was given a velocity of 3 m / s, the amount of back suction did not exceed 5%.

AI Magazine ◽  
2015 ◽  
Vol 36 (3) ◽  
pp. 61-72 ◽  
Author(s):  
Amos Azaria ◽  
Ariel Rosenfeld ◽  
Sarit Kraus ◽  
Claudia V. Goldman ◽  
Omer Tsimhoni

Reducing energy consumption of climate control systems is important in order to reduce human environmental footprint. The need to save energy becomes even greater when considering an electric car, since heavy use of the climate control system may exhaust the battery. In this article we consider a method for an automated agent to provide advice to drivers which will motivate them to reduce the energy consumption of their climate control unit. Our approach takes into account both the energy consumption of the climate control system and the expected comfort level of the driver. We therefore build two models, one for assessing the energy consumption of the climate control system as a function of the system’s settings, and the other, models human comfort level as a function of the climate control system’s settings. Using these models, the agent provides advice to the driver considering how to set the climate control system. The agent advises settings which try to preserve a high level of comfort while consuming as little energy as possible. We empirically show that drivers equipped with our agent which provides them with advice significantly save energy as compared to drivers not equipped with our agent.


2020 ◽  
Vol 4 (41) ◽  
pp. 83-87
Author(s):  
ALEKSEY SEDOV ◽  

The Federal scientific Agroengineering center VIM has developed technical tools, algorithms and software for the intelligent automatic control system for milking animals “Stimul” on the “Herringbone” milking unit in three versions. The created system does not include automatic selection gates for effective management of zootechnical and veterinary services of animals. (Research purpose) The research purpose is in developing an intelligent machine for automatic sorting of animals for servicing and managing the herd according to specified characteristics. (Materials and methods) The article presents the development of control and management systems in dairy farming based on the conceptual principles of digital transformation. The digital control system is based on a multifunctional panel controller. The created control unit has a port for connecting to the RS 485 network and provides support for network functions via the Modbus Protocol. The programming of the control unit has been made in the SMLogix tool environment, which supports the FBD function block language. (Results and discussion) The article presents an intelligent machine for automatic sorting of animal flows for servicing and managing the herd according to specified characteristics with the unification of hardware, software modules and interface. The article describes the necessary parameters for the automatic remote animal identification system, the basic component of the control system of an intelligent machine for sorting animals according to specified characteristics. (Conclusions) The machine allows to automatically identify, sort and send animals to the specified areas for individual service.


2013 ◽  
Vol 774-776 ◽  
pp. 407-410
Author(s):  
Qiu Hua Miao ◽  
Zhi Guang Guan

In this paper, a kind of efficient air-conditioning control system is proposed. PIC18F458 is adopted as main control unit of the system , which collects all kinds of analog singles such as temperature, humidity and so on, then convert them to digital by the A/D itself. After disposing and calculating each analog signal the system drives corresponding actuator to work to adjust temperature, humidity and cleanness of the air in bus, making passengers satisfied with air quality in bus.


2013 ◽  
Vol 53 (6) ◽  
pp. 580
Author(s):  
Mathew K. Pines ◽  
Tracy Muller ◽  
Clive J. C. Phillips

Noxious gases produced at hazardous concentrations in animal housing systems may affect the health and wellbeing of both animals and workers. In order to determine if the gaseous emissions from a pre-export assembly depot for sheep constituted a risk, atmospheric ammonia was measured in eight sheep buildings at an Australian assembly depot. Additionally, meteorological variables and distance from excreta were measured to determine their influence on ammonia, carbon dioxide and hydrogen sulfide concentrations. Repeat measurements were made at 12 sites in each building on 4 separate days, and four buildings were mapped using longitudinal and latitudinal transects. Concentrations of ammonia, carbon dioxide and hydrogen sulfide were all below the recommended safety thresholds for humans and livestock. There were positive correlations between ammonia and the following variables: ambient temperature and moisture content, and negative correlations with distance from animal excreta. Understanding these relationships will help to understand the reasons for ammonia accumulation in such buildings.


2012 ◽  
Vol 10 (3) ◽  
pp. 97-118
Author(s):  
Krzysztof Biernat ◽  
Izabela Różnicka

Both governmental and international programs support the promotion of biofuels and aim to increase the limit of renewable energy used in the fuel energy balance. Biogas is produced during the anaerobic methane fermentationprocess and it is known as a significant source of renewable energy, contributing to agriculture and environmental protection. Three types of biogas can be distinguished: biogas from sewage sludge, biogas collected from land`fils, andagricultural biogas. There are several possibilities of using upgraded biogas. Biogas can be used in cogeneration systems to provide heat and electricity, in transportation as a motor fuel and in the production of biohydrogen. Biogas upgrading process leads to a product which is characterized by the same parameters as compressed natural gas. Direct biogas use in the production of hydrogen is possible because of prior purification from traces like hydrogen sulfide, except carbon dioxide, by which the reaction can proceed in the desired manner.


Sign in / Sign up

Export Citation Format

Share Document