scholarly journals Stability research on reservoir slope based on geomechanical parameters back-analysis and monitoring data: A case study in China

2021 ◽  
Vol 861 (6) ◽  
pp. 062029
Author(s):  
Fugang Zheng
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Cong Li ◽  
Shui-Hua Jiang ◽  
Jinhui Li ◽  
Jinsong Huang

This paper proposes a new sequential probabilistic back analysis approach for probabilistically determining the uncertain geomechanical parameters of shield tunnels by using time-series monitoring data. The approach is proposed based on the recently developed Bayesian updating with subset simulation. Within the framework of the proposed approach, a complex Bayesian back analysis problem is transformed into an equivalent structural reliability problem based on subset simulation. Hermite polynomial chaos expansion-based surrogate models are constructed to improve the computational efficiency of probabilistic back analysis. The reliability of tunneling-induced ground settlements is updated in the process of sequential back analyses. A real shield tunnel project of No. 1 Nanchang Metro Line in China is investigated to assess the effectiveness of the approach. The proposed approach is able to infer the posterior distributions of uncertain geomechanical parameters (i.e., Young’s moduli of surrounding soil layers and ground vehicle load). The reliability of tunneling-induced ground settlements can be updated in a real-time manner by fully utilizing the time-series monitoring data. The results show good agreement with the variation trend of field monitoring data of ground settlement and the post-event investigations.


Landslides ◽  
2011 ◽  
Vol 8 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Marina Pirulli ◽  
Alessio Colombo ◽  
Claudio Scavia
Keyword(s):  

Author(s):  
Vanessa Tobias ◽  

In fisheries monitoring, catch is assumed to be a product of fishing intensity, catchability, and availability, where availability is defined as the number or biomass of fish present and catchability refers to the relationship between catch rate and the true population. Ecological monitoring programs use catch per unit of effort (CPUE) to standardize catch and monitor changes in fish populations; however, CPUE is proportional to the portion of the population that is vulnerable to the type of gear used in sampling, which is not necessarily the entire population. Programs often deal with this problem by assuming that catchability is constant, but if catchability is not constant, it is not possible to separate the effects of catchability and population size using monitoring data alone. This study uses individual-based simulation to separate the effects of changing environmental conditions on catchability and availability in environmental monitoring data. The simulation combines a module for sampling conditions with a module for individual fish behavior to estimate the proportion of available fish that would escape from the sample. The method is applied to the case study of the well monitored fish species Delta Smelt (Hypomesus transpacificus) in the San Francisco Estuary, where it has been hypothesized that changing water clarity may affect catchability for long-term monitoring studies. Results of this study indicate that given constraints on Delta Smelt swimming ability, it is unlikely that the apparent declines in Delta Smelt abundance are the result of changing water clarity affecting catchability.


Author(s):  
Vanessa Tobias

In fisheries monitoring, catch is assumed to be a product of fishing intensity, catchability, and availability, where availability is defined as the number or biomass of fish present and catchability refers to the relationship between catch rate and the true population. Ecological monitoring programs use catch per unit of effort (CPUE) to standardize catch and monitor changes in fish populations; however, CPUE is proportional to the portion of the population that is vulnerable to the type of gear that is used in sampling, which is not necessarily the entire population. Programs often deal with this problem by assuming that catchability is constant, but if catchability is not constant, it is not possible to separate the effects of catchability and population size using monitoring data alone. This study uses individual-based simulation to separate the effects of changing environmental conditions on catchability and availability in environmental monitoring data. The simulation combines a module for sampling conditions with a module for individual fish behavior to estimate the proportion of available fish that would escape from the sample. The method is applied to the case study of the well-monitored fish species Delta Smelt (Hypomesus transpacificus) in the San Francisco Estuary, where it has been hypothesized that changing water clarity may affect catchability for long-term monitoring studies. Results of this study indicate that given constraints on Delta Smelt swimming ability, it is unlikely that the apparent declines in Delta Smelt abundance are due to an effect of changing water clarity on catchability.


2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Sunday J. Olotu ◽  
Olatunbosun A. Alao ◽  
Paul G. Agbai ◽  
Olaolu Afolabi ◽  
Esther B. Inaolaji

2012 ◽  
Vol 204-208 ◽  
pp. 196-201 ◽  
Author(s):  
Jian Cong Xu ◽  
Yi Wei Xu

The parabolic-apex numerical back-analysis method (PNBM) was proposed to obtain such physical-mechanics parameters as Young's modulus and lateral pressure coefficient of surrounding rock by 3D FEM numerical analysis based on in-situ monitoring data. Taking Xiang-an Subsea Tunnel (located in Xiamen, Fujian Province, China) for example, adopting the PNBM using ABAQUS software, three dimensional elastic-plastic FEM-PNBM of tunnel surrounding rock was validated using in-situ monitoring data. The results show as follows: Using the PNBM, not only may high calculation precision be obtained, better meeting the demand of actual projects, but also more reasonable and reliable physical mechanics indices of surrounding rock such as Young's modulus and lateral confinement pressure coefficient, may be obtained. The applicability and the simplicity of this proposed method also support its usefulness.


2010 ◽  
Vol 16 (2) ◽  
pp. 76 ◽  
Author(s):  
Joanne M. Hoare ◽  
Colin F. J. O’Donnell ◽  
Elaine F. Wright

Indicator species approaches are widely used in conservation as a shortcut to measuring attributes of species and ecosystems. A variety of indicator species concepts are in use and are applicable to a range of situations. Indicator species are increasingly being used in environmental reporting to evaluate trends in environmental attributes quantitatively. We use the most recent State of the Environment report from New Zealand as a case study to evaluate: (1) how indicator species concepts are being applied to environmental reporting and (2) the selection of individual species as indicators. At present indicator species used in environmental reporting in New Zealand reflect biases in national monitoring data towards forest-dwelling, terrestrial vertebrates that are vulnerable to predation by introduced mammals. Scientific literature generally supports links between selected taxa and the aspect of ecosystem health they are purported to indicate, but their roles as long-term indicators of environmental health have yet to be evaluated. A primary goal of State of the Environment reporting is to set a benchmark against which environmental outcomes can be monitored over time; thus it is recognized that taxa reported should represent a broader range of environmental attributes. However, selection of taxa for environmental reporting is severely constrained by limited national species monitoring data. A strategic approach to national measurement, storage and analysis of long-term monitoring data is required to support selection of representative species for environmental reporting. We support current initiatives to select taxa for future measurement and reporting in an objective, transparent manner and recommend that they encompass representation of: (1) taxonomic diversity, (2) ecosystem types, (3) key environmental pressures and (4) threat status.


2019 ◽  
Vol 81 ◽  
pp. 225-237 ◽  
Author(s):  
Jixian Cui ◽  
Jianlei Lang ◽  
Tian Chen ◽  
Shushuai Mao ◽  
Shuiyuan Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document