scholarly journals Support Vector Machine for Land Cover Classification using Lidar Data

2021 ◽  
Vol 873 (1) ◽  
pp. 012095
Author(s):  
M I Hariyono ◽  
Rokhmatuloh ◽  
M P Tambunan ◽  
R S Dewi

Abstract The Lidar technology is widely used in various studies for mapping needs. In this study was to extract land cover using Lidar data by incorporating a support vector machine (SVM) approach. The study was located in the city of Lombok, Nusa Tenggara Barat. Image extraction was performed on single wavelength Lidar data to produce intensity and elevation (Digital Surface Model) features. Feature extraction of Lidar data was implemented by using a pixel-based approach. The extracted features used as an attribute for training data to generate the SVM prediction model. The prediction model to predict the types of land cover in the study area such as buildings, trees, roads, bare soil, and low vegetations. For accuracy assessment purposes, we used topographic map available in shapefile format as the reference map and estimated the accuracies of the resulted classifications. In this study, land cover classification used combination bands which improved the overall accuracy by approximately 20%. The use of the intensity data in this band combination was the reason for the increasing accuracy.

Author(s):  
M. Zhou ◽  
C. R. Li ◽  
L. Ma ◽  
H. C. Guan

In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.


Author(s):  
M. Zhou ◽  
C. R. Li ◽  
L. Ma ◽  
H. C. Guan

In this study, a land cover classification method based on multi-class Support Vector Machines (SVM) is presented to predict the types of land cover in Miyun area. The obtained backscattered full-waveforms were processed following a workflow of waveform pre-processing, waveform decomposition and feature extraction. The extracted features, which consist of distance, intensity, Full Width at Half Maximum (FWHM) and back scattering cross-section, were corrected and used as attributes for training data to generate the SVM prediction model. The SVM prediction model was applied to predict the types of land cover in Miyun area as ground, trees, buildings and farmland. The classification results of these four types of land covers were obtained based on the ground truth information according to the CCD image data of Miyun area. It showed that the proposed classification algorithm achieved an overall classification accuracy of 90.63%. In order to better explain the SVM classification results, the classification results of SVM method were compared with that of Artificial Neural Networks (ANNs) method and it showed that SVM method could achieve better classification results.


2019 ◽  
Vol 11 (12) ◽  
pp. 1461 ◽  
Author(s):  
Husam A. H. Al-Najjar ◽  
Bahareh Kalantar ◽  
Biswajeet Pradhan ◽  
Vahideh Saeidi ◽  
Alfian Abdul Halin ◽  
...  

In recent years, remote sensing researchers have investigated the use of different modalities (or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse range of sensors and images. Currently, there are no (or only a few) studies that have been done to increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM and UAV images for land use/land cover mapping via classification into seven classes: bare land, buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically, we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM data, where the final classification was performed using a CNN. CNN, as a classification method, is promising due to hierarchical learning structure, regulating and weight sharing with respect to training data, generalization, optimization and parameters reduction, automatic feature extraction and robust discrimination ability with high performance. The experimental results show that a CNN trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of 0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features such as buildings and trees improved the differentiation between vegetation specifically where plants were dense.


2020 ◽  
Vol 9 (1) ◽  
pp. 12-20
Author(s):  
Kamaluddin Junianto Dimas ◽  
Rahma Anisa ◽  
Itasia Dina Sulvianti

DKI Jakarta is a center of government as well as economy and business of Indonesia, thus development projects in Jakarta continue every year. Therefore, monitoring for land use has to be improved in accordance to DKI Jakarta Spatial Planning. The attempt needs to be supported by continuous data availability regarding land cover condition in Jakarta. The aforementioned data collecting process become easier due to remote sensing technology development. Remote sensing technology can be utilized for analyzing the size of land use area by using classification analysis. It has been found that the level of accuracy depends on the type of classification method and number of training data. This research evaluated the level of overall accuracy, sensitivity, and specificity of Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM) along with number of data training used in classifying Jakarta land cover in 2017. The results showed that in both methods, the variance of all the aforementioned criteria were getting smaller along with the increasing number of training data. QDA and SVM had similar performance based on overall accuracy and specificity. However, SVM was better than QDA on sensitivity.


2019 ◽  
Vol 11 (21) ◽  
pp. 2548
Author(s):  
Dong Luo ◽  
Douglas G. Goodin ◽  
Marcellus M. Caldas

Disasters are an unpredictable way to change land use and land cover. Improving the accuracy of mapping a disaster area at different time is an essential step to analyze the relationship between human activity and environment. The goals of this study were to test the performance of different processing procedures and examine the effect of adding normalized difference vegetation index (NDVI) as an additional classification feature for mapping land cover changes due to a disaster. Using Landsat ETM+ and OLI images of the Bento Rodrigues mine tailing disaster area, we created two datasets, one with six bands, and the other one with six bands plus the NDVI. We used support vector machine (SVM) and decision tree (DT) algorithms to build classifier models and validated models performance using 10-fold cross-validation, resulting in accuracies higher than 90%. The processed results indicated that the accuracy could reach or exceed 80%, and the support vector machine had a better performance than the decision tree. We also calculated each land cover type’s sensitivity (true positive rate) and found that Agriculture, Forest and Mine sites had higher values but Bareland and Water had lower values. Then, we visualized land cover maps in 2000 and 2017 and found out the Mine sites areas have been expanded about twice of the size, but Forest decreased 12.43%. Our findings showed that it is feasible to create a training data pool and use machine learning algorithms to classify a different year’s Landsat products and NDVI can improve the vegetation covered land classification. Furthermore, this approach can provide a venue to analyze land pattern change in a disaster area over time.


Sign in / Sign up

Export Citation Format

Share Document