scholarly journals Experimental Investigation on Mechanical Properties of Compressed Soil Blocks Manufactured Using Waste Materials

2021 ◽  
Vol 889 (1) ◽  
pp. 012012
Author(s):  
Absar Yousuf Wani ◽  
Mohit Bhandari

Abstract This experimental investigation is done on the earth compressed block prepared by the Waste material. These waste materials are Rice Straw Fiber, marble powder, and Sugarcane Bagasse ash. This waste pollutesthe environment and creates the problem of disposal. Redbrick needs heat treatment which results in air pollution, cement bricks need water for curing which needs waterusage in huge quantity. Marble powder stabilized bricks need sun drying. An increase in marble content in the bricks results in the increment of compressive strength due to the presence of calcium content in the marble powder.it also increases the dry density of the brick because marble powder doesnot absorbs water and can easily fill the voids created by the soil,Sugarcene Bagasse ash andRice Straw fiber. Rice Straw Fiber reduces the compression of bricks reason is fiber cuts off on the pressure and it also creates voids when blended with the soil mix making usage of bagasse in the brick can help in increasing the strength of the concrete due to its pozzalonic action with cement but bagasse ash reduces the dry density of bricks and doesnot affect the strength of bricks because its creates voids and it is chemically neutral in bricks.

2021 ◽  
Vol 889 (1) ◽  
pp. 012025
Author(s):  
Aman Verma ◽  
Tarun Sharma

Abstract The world is facing pollution crises and these cries are due to improper disposal of waste material. This materials are Rice husk ash, bagasseash, waste marble powder, remanings of grains like rice starw and many more. Some of the waste materials can easily be disposable in the construction industry by using them in the concrete or in any other construction material. This paper deals with this waste material to be utilized in the compressed earth blocks. To study the mechanical properties of compressed soil blocks prepared by a combination of various ratios of Marble powder, paddy Straw Fiber and Sugarcane bagasse ash, the compression test, and water absorption test was performed. The marble powder is introduced in the manner to replace soil by 25%, 35%% and 45 %. Paddy Starws fibers are introducedby the replacement percentage of.6%,.8%and 1% whereas the bagasse ash is been introduced in the manner of 8%,10% and 12%This various test shows that the Marble powder Waste increase dry density which helps in increasing the compression Capacity of the brick. Whereas Paddy Straw fiber and bagasse ash decrease the dry density of brick which results in decreasingthe optimum water content of the mixof the brick. Bagasse ash and paddy straw fiber increase the water absorption capacity of the brick.


2021 ◽  
Vol 889 (1) ◽  
pp. 012060
Author(s):  
Raghav Sharma ◽  
Tarun Sharma

Abstract The problem of pollution is increasing daily due to excessive production and improper disposal of the waste. some waste like ashes and stone powder can be easily utilize in the concrete or with any other construction material like paver block or bricks. To utilize material like marble powder bagasse ash and rice straw effectively the experimental study of Earth compressed bricks is conducted. This paper deals about the mechanical properties of earth compressed bricks which are made up of soil and the add-ons are marble powder, bagasse ash and rice straw fiber with different ratios of combination. This ratios are for marble powder 20%, 30% and 40%. for bagasse ash it is 7% 10% and 13% and for rice straw it is .5%, .75% and 1%. The compression property of bricks is increased when the marble powder is increased with less water absorption in soil because waste marble powder does not absorbs water and due to its fine partical size it fills the voids in the bricks and creates good packing of the bricks. Water is absorbed by Rice Straw and bagasse ash which results in increase of the water absorption capacity of earth compressed bricks.


2017 ◽  
Vol 1144 ◽  
pp. 9-13
Author(s):  
Lukáš Hlubocký ◽  
Zdeněk Prošek

This paper deals with the use of waste materials from processing of stone in the construction industry. The tested mixtures consisted of Portland cement CEM I 42.5 R, micronized waste marble powder and crushed waste limestone. The article examines the effect of varying the amount of waste on the mechanical properties of the cement composite. At first, samples were tested non-destructively for determine the dynamic modulus of elasticity and then were tested destructively for determine tensile bending and compressive strength.


2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


Sign in / Sign up

Export Citation Format

Share Document