scholarly journals Rainfall prediction over Ambon Meteorological Station using Multi-Physics Ensemble WRF-ARW

2021 ◽  
Vol 893 (1) ◽  
pp. 012026
Author(s):  
F Alfahmi ◽  
R Charolydya ◽  
A Khaerima

Abstract One of the methods to create good forecast using WRF-ARW modelling is tuning the parameterization. However, this method cannot provide rainfall event probability. Current research result revealed that it was able to simulate and forecast some weather parameters. However, based on the verification results, there were some weather parameters which still had low accuracy. Due to such low accuracy on some weather parameters, the authors were interested in performing post-processing methods in forecasting the weather during extreme weather at Pattimura Ambon Meteorological Station. In this study, we employed multi-physics ensemble prediction system (MEPS) by combining 20 WRF-ARW parameterization schemas, which were processed to obtain the ensemble mean, ensemble spread, and basic probability to get the uncertainty from each weather parameters. Verification process was done by using spreads, skill method and ROC curves. It was discovered that MEPS products have a better skill compared to the forecast control, the correlation value of MEPS products is larger and has the lowest error value. In addition, the result of ROC curves shows that the MEPS has an ability to predict weather condition during cloudy and extreme rain.

2012 ◽  
Vol 4 (1) ◽  
pp. 65
Author(s):  
Xiao Yu-Hua ◽  
He Guang-Bi ◽  
Chen Jing ◽  
Deng Guo

2019 ◽  
Vol 148 (1) ◽  
pp. 63-81 ◽  
Author(s):  
Kevin Bachmann ◽  
Christian Keil ◽  
George C. Craig ◽  
Martin Weissmann ◽  
Christian A. Welzbacher

Abstract We investigate the practical predictability limits of deep convection in a state-of-the-art, high-resolution, limited-area ensemble prediction system. A combination of sophisticated predictability measures, namely, believable and decorrelation scale, are applied to determine the predictable scales of short-term forecasts in a hierarchy of model configurations. First, we consider an idealized perfect model setup that includes both small-scale and synoptic-scale perturbations. We find increased predictability in the presence of orography and a strongly beneficial impact of radar data assimilation, which extends the forecast horizon by up to 6 h. Second, we examine realistic COSMO-KENDA simulations, including assimilation of radar and conventional data and a representation of model errors, for a convectively active two-week summer period over Germany. The results confirm increased predictability in orographic regions. We find that both latent heat nudging and ensemble Kalman filter assimilation of radar data lead to increased forecast skill, but the impact is smaller than in the idealized experiments. This highlights the need to assimilate spatially and temporally dense data, but also indicates room for further improvement. Finally, the examination of operational COSMO-DE-EPS ensemble forecasts for three summer periods confirms the beneficial impact of orography in a statistical sense and also reveals increased predictability in weather regimes controlled by synoptic forcing, as defined by the convective adjustment time scale.


2012 ◽  
Vol 27 (3) ◽  
pp. 757-769 ◽  
Author(s):  
James I. Belanger ◽  
Peter J. Webster ◽  
Judith A. Curry ◽  
Mark T. Jelinek

Abstract This analysis examines the predictability of several key forecasting parameters using the ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the North Indian Ocean (NIO) including tropical cyclone genesis, pregenesis and postgenesis track and intensity projections, and regional outlooks of tropical cyclone activity for the Arabian Sea and the Bay of Bengal. Based on the evaluation period from 2007 to 2010, the VarEPS TC genesis forecasts demonstrate low false-alarm rates and moderate to high probabilities of detection for lead times of 1–7 days. In addition, VarEPS pregenesis track forecasts on average perform better than VarEPS postgenesis forecasts through 120 h and feature a total track error growth of 41 n mi day−1. VarEPS provides superior postgenesis track forecasts for lead times greater than 12 h compared to other models, including the Met Office global model (UKMET), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Global Forecasting System (GFS), and slightly lower track errors than the Joint Typhoon Warning Center. This paper concludes with a discussion of how VarEPS can provide much of this extended predictability within a probabilistic framework for the region.


2009 ◽  
Vol 24 (3) ◽  
pp. 812-828 ◽  
Author(s):  
Young-Mi Min ◽  
Vladimir N. Kryjov ◽  
Chung-Kyu Park

Abstract A probabilistic multimodel ensemble prediction system (PMME) has been developed to provide operational seasonal forecasts at the Asia–Pacific Economic Cooperation (APEC) Climate Center (APCC). This system is based on an uncalibrated multimodel ensemble, with model weights inversely proportional to the errors in forecast probability associated with the model sampling errors, and a parametric Gaussian fitting method for the estimate of tercile-based categorical probabilities. It is shown that the suggested method is the most appropriate for use in an operational global prediction system that combines a large number of models, with individual model ensembles essentially differing in size and model weights in the forecast and hindcast datasets being inconsistent. Justification for the use of a Gaussian approximation of the precipitation probability distribution function for global forecasts is also provided. PMME retrospective and real-time forecasts are assessed. For above normal and below normal categories, temperature forecasts outperform climatology for a large part of the globe. Precipitation forecasts are definitely more skillful than random guessing for the extratropics and climatological forecasts for the tropics. The skill of real-time forecasts lies within the range of the interannual variability of the historical forecasts.


Author(s):  
Xubin Zhang

AbstractThis study examines the case dependence of the multiscale characteristics of initial condition (IC) and model physics (MO) perturbations and their interactions in a convection-permitting ensemble prediction system (CPEPS), focusing on the 12-h forecasts of precipitation perturbation energy. The case dependence of forecast performances of various ensemble configurations is also examined to gain guidance for CPEPS design. Heavy-rainfall cases over Southern China during the Southern China Monsoon Rainfall Experiment (SCMREX) in May 2014 were discriminated between the strongly and weakly forced events in terms of synoptic-scale forcing, each of which included 10 cases. In the cases with weaker forcing, MO perturbations showed larger influences while the enhancements of convective activities relative to the control member due to IC perturbations were less evident, leading to smaller dispersion reduction due to adding MO perturbations to IC perturbations. Such dispersion reduction was more sensitive to IC and MO perturbation methods in the weakly and strongly forced cases, respectively. The dispersion reduction improved the probabilistic forecasts of precipitation, with more evident improvements in the cases with weaker forcing. To improve the benefits of dispersion reduction in forecasts, it is instructive to elaborately consider the case dependence of dispersion reduction, especially the various sensitivities of dispersion reduction to different-source perturbation methods in various cases, in CPEPS design.


2019 ◽  
Vol 32 (3) ◽  
pp. 957-972 ◽  
Author(s):  
Takeshi Doi ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

This paper explores merits of 100-ensemble simulations from a single dynamical seasonal prediction system by evaluating differences in skill scores between ensembles predictions with few (~10) and many (~100) ensemble members. A 100-ensemble retrospective seasonal forecast experiment for 1983–2015 is beyond current operational capability. Prediction of extremely strong ENSO and the Indian Ocean dipole (IOD) events is significantly improved in the larger ensemble. It indicates that the ensemble size of 10 members, used in some operational systems, is not adequate for the occurrence of 15% tails of extreme climate events, because only about 1 or 2 members (approximately 15% of 12) will agree with the observations. We also showed an ensemble size of about 50 members may be adequate for the extreme El Niño and positive IOD predictions at least in the present prediction system. Even if running a large-ensemble prediction system is quite costly, improved prediction of disastrous extreme events is useful for minimizing risks of possible human and economic losses.


2018 ◽  
Vol 146 (10) ◽  
pp. 3481-3498 ◽  
Author(s):  
Angela Benedetti ◽  
Frédéric Vitart

Abstract The fact that aerosols are important players in Earth’s radiation balance is well accepted by the scientific community. Several studies have shown the importance of characterizing aerosols in order to constrain surface radiative fluxes and temperature in climate runs. In numerical weather prediction, however, there has not been definite proof that interactive aerosol schemes are needed to improve the forecast. Climatologies are instead used that allow for computational efficiency and reasonable accuracy. At the monthly to subseasonal range, it is still worth investigating whether aerosol variability could afford some predictability, considering that it is likely that persisting aerosol biases might manifest themselves more over time scales of weeks to months and create a nonnegligible forcing. This paper explores this hypothesis using the ECMWF’s Ensemble Prediction System for subseasonal prediction with interactive prognostic aerosols. Four experiments are conducted with the aim of comparing the monthly prediction by the default system, which uses aerosol climatologies, with the prediction using radiatively interactive aerosols. Only the direct aerosol effect is considered. Twelve years of reforecasts with 50 ensemble members are analyzed on the monthly scale. Results indicate that the interactive aerosols have the capability of improving the subseasonal prediction at the monthly scales for the spring/summer season. It is hypothesized that this is due to the aerosol variability connected to the different phases of the Madden–Julian oscillation, particularly that of dust and carbonaceous aerosols. The degree of improvement depends crucially on the aerosol initialization. More work is required to fully assess the potential of interactive aerosols to increase predictability at the subseasonal scales.


Sign in / Sign up

Export Citation Format

Share Document