scholarly journals Spatial Distribution of Grain Size Within Nitraria retusa Coppice Dune in Kuwait

2021 ◽  
Vol 904 (1) ◽  
pp. 012036
Author(s):  
A Al Saleh ◽  
Modi Al Farsi ◽  
N Al Dousari ◽  
G Almutairi ◽  
A Almutairi ◽  
...  

Abstract Nabkhas are desert and sabkha perennial plants that form stabilized dunes. A total of 23 sediment samples were taken from the surface and subsurface (30 cm depth) of nabkha that formed around Nitraria retusa as the dominant perennial plant species in Ghudai-Kuwait. The morphological and ecological functions of sabkha nabkha are distinguishable. The existence of shallow fresh groundwater that floats atop the saline water bodies and is recharged by rainwater and surface drainage routes is due to the presence of thriving nabkhas within a salty sabkha environment. the selected non-protected Nitraria nebkhas have an elongated dome shape with a height of 1.30 m and an average length of 11.80 m. also, the greatest distances between isolated nabkhas are found in Nitraria dominated coppice dunes. There are three types of Nitraria dominated coppice dunes, namely: single (one plant), coupled (two plants), and complex (three or more). Nitraria is considered one of Kuwait’s most effective plant species for trapping mobile sand, Nitraria can to tarp to 21 m3 of mobile sand and dust. The variations in grain size sediments in Nitraria retusa between surface and root zone, border and crest, upwind and downwind, are efficient for retaining water. Furthermore, Nitraria retusa from the sabkha environment is the most effective in collecting mobile sand in the region.

2017 ◽  
pp. 77
Author(s):  
Rafael Lira ◽  
Alejandro Casas

Information on use and management of wild species of Cucurbitaceae is presented, in order to analyze processes of incipient plant domestication. Ibervillea millspaughii is a perennial plant species with massive roots, distributed from Tamaulipas to Belize. Roots of this species are utilized as medicine in the treatment of arthritis, inflammations and muscular pain. Roots are commonly collected from individuals in wild populations, but, in some villages of Quinatana Roo people tolerate and enhance individuals of this plant species in anthropogenic areas; also, people cultivate this plant species in home gardens. Melothria pendula is distributed from the United States to Argentina. Fruits and young stems and leaves of this species are consumed as food and used in traditional medicine. These products are generally gathered from wild or weedy populations, but in La Montaña de Guerrero region, the tolerance of this species and the intentional dispersion of its seeds in anthropogenic areas are also common, in order to increase its availability. Use and propagation of this plant species may involve selection by people who distinguish between "bitter" and "sweet" variants, preferring the "sweet" ones. Sicyos parviflorus, Cyclanthera dissecta, C. langaei and C. ribiflora are consumed as greens by people in different regions of Mexico, who gather them from wild or weedy populations, although individual plants of these species are also tolerated in anthropogenic areas. The different forms of management identified in the species mentioned are possibly causing processes of domestication, but such processes are yet to be evaluated.


2020 ◽  
Vol 8 (11) ◽  
pp. 944
Author(s):  
Demetrios Hermides ◽  
Panayota Makri ◽  
George Kontakiotis ◽  
Assimina Antonarakou

This study focuses on the hydrogeological conditions in the coastal (Thriassion plain) and submarine (Eleusis Gulf) environment of West Attica, Greece. Up to now, the predominant aspect for the Thriassion plain groundwater—hosted within the Neogene-Quaternary sediments—was its direct hydraulic contact with the seawater. Due to that, the coastal plain groundwater is strongly believed to be of brackish quality irrespective of the local hydrodynamic conditions. Our major goal is to evaluate the actual mechanism controlling the groundwater flow, the origin and distribution of saline water, and the existence of fresh groundwater in the submarine environment. We summarize the following: (1) groundwater of the Thriassion plain is partly discharged as an upwards leakage from deeper aquifers, (2) modern direct seawater intrusion is not possible in the Neogene-Quaternary sediments, and (3) fresh groundwater possibly exists below the sea floor of the Eleusis Gulf. The results may serve as hint of further research in groundwater resources below the Mediterranean Sea floor, and, consequently, a new perspective on water resource management could emerge.


Author(s):  
Oriana Sanicola ◽  
Terry Lucke ◽  
Michael Stewart ◽  
Katharina Tondera ◽  
Christopher Walker

Constructed Floating Wetlands (CFWs) are increasingly being used globally in freshwater environments such as urban lakes and ponds to remove pollutants from urban stormwater runoff. However, to date there has been limited research into the use and performance of these systems in saline environments. This study compared the root and shoot biomass growth and nutrient uptake of five different plant species, Chrysopogon zizanioides, Baumea juncea, Isolepis nodosa, Phragmites australis and Sarcocornia quinqueflora, in three different saltwater treatments over a 12-week period. The aim of the study was to identify which of the plant species may be most suitable for use in CFWs in saline environments. Plant nutrient uptake testing revealed that Phragmites australis had the greatest percentage increase (1473–2477%) of Nitrogen mass in the shoots in all treatments. Sarcocornia quinqueflora also had impressive Nitrogen mass increase in saltwater showing an increase of 966% (0.208 ± 0.134 g). This suggests that the use of Phragmites australis and Sarcocornia quinqueflora plants in CFWs installed in saline water bodies, with regular harvesting of the shoot mass, may significantly reduce Nitrogen concentrations in the water. Isolepis nodosa had the greatest percentage increase (112% or 0.018 ± 0.020 g) of Phosphorous mass in the shoots in the saltwater treatment. Baumea juncea had the greatest percentage increase (315% or 0.026 ± 0.012 g) of Phosphorous mass in the roots in the saltwater treatment. This suggests that the use of Isolepis nodosa and Baumea juncea plants in CFWs installed in saline water bodies may significantly reduce Phosphorous concentrations in the water if there was a way to harvest both the shoots above and the roots below the CFWs. The study is continuing, and it is anticipated that more information will be available on CFW plants installed in saline environments in the near future.


2020 ◽  
Vol 234 ◽  
pp. 106094
Author(s):  
Moazam Khaleghi ◽  
Farzad Hassanpour ◽  
Fatemeh Karandish ◽  
Ali Shahnazari

2017 ◽  
Vol 39 (1) ◽  
pp. 33 ◽  
Author(s):  
Grant D. Linley ◽  
Katherine E. Moseby ◽  
David C. Paton

Burrowing bettongs (Bettongia lesueur) reached high densities within the fenced Arid Recovery reserve. Grazing pressure was assessed by comparing the vegetation inside and outside the reserve during April in 2012, 2013 and 2014. Mean numbers of bettong tracks crossing small 10 m × 1 m plots overnight in the main exclosure were 20 in 2012, decreasing to 4 in 2013 and 3 in 2014. Similar declines were present in the second expansion, where tracks decreased from 7 in 2012 to 3 in 2013 and 2 in 2014. Perennial plant species richness decreased significantly over the study period. Acacia aneura, Acacia ligulata, Atriplex vesicaria, Crotalaria eremaea, Dodonaea viscosa, Enchylaena tomentosa, Maireana astrotricha and Sida ammophila were the most heavily grazed species within the reserve. Overall, more than 25% of plants showed some form of conspicuous grazing. C. eremaea and E. tomentosa showed little damage outside the reserve. Inside the reserve many C. eremaea were dead and heavily browsed and few E. tomentosa remained. Recent recruitment of A. ligulata and D. viscosa was also much higher outside the reserve. High densities of burrowing bettongs were associated with declines in vegetation condition potentially impacting other species and the ecosystem as a whole.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1690 ◽  
Author(s):  
Marmar Mabrouk ◽  
Andreja Jonoski ◽  
Gualbert H. P. Oude Essink ◽  
Stefan Uhlenbrook

As Egypt’s population increases, the demand for fresh groundwater extraction will intensify. Consequently, the groundwater quality will deteriorate, including an increase in salinization. On the other hand, salinization caused by saltwater intrusion in the coastal Nile Delta Aquifer (NDA) is also threatening the groundwater resources. The aim of this article is to assess the situation in 2010 (since this is when most data is sufficiently available) regarding the available fresh groundwater resources and to evaluate future salinization in the NDA using a 3D variable-density groundwater flow model coupled with salt transport that was developed with SEAWAT. This is achieved by examining six future scenarios that combine two driving forces: increased extraction and sea level rise (SLR). Given the prognosis of the intergovernmental panel on climate change (IPCC), the scenarios are used to assess the impact of groundwater extraction versus SLR on the seawater intrusion in the Delta and evaluate their contributions to increased groundwater salinization. The results show that groundwater extraction has a greater impact on salinization of the NDA than SLR, while the two factors combined cause the largest reduction of available fresh groundwater resources. The significant findings of this research are the determination of the groundwater volumes of fresh water, brackish, light brackish and saline water in the NDA as a whole and in each governorate and the identification of the governorates that are most vulnerable to salinization. It is highly recommended that the results of this analysis are considered in future mitigation and/or adaptation plans.


2006 ◽  
Vol 72 (4) ◽  
pp. 2331-2342 ◽  
Author(s):  
Mary Beth Leigh ◽  
Petra Prouzová ◽  
Martina Macková ◽  
Tomáš Macek ◽  
David P. Nagle ◽  
...  

ABSTRACT The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.


Sign in / Sign up

Export Citation Format

Share Document