scholarly journals Remote Sensing Data Analysis for the Ecological Stability Purposes

2021 ◽  
Vol 906 (1) ◽  
pp. 012068
Author(s):  
Jakub Chromcak ◽  
Matus Farbak ◽  
Alexander Ivannikov ◽  
Robert Sasik ◽  
Jana Dibdiakova

Abstract The remote sensing offers the opportunity of miscellaneous data acquisition with various ways of their consequent analysis and application. The processed remote sensing data in the form of georeferenced orthophotoimages or orthophotomaps enable the study of the examined locality from the chosen observed feature point of view. According to periodical data acquisition, it is possible to monitor the ongoing and emerging actions in time and then prevent and predict the upcoming actions. With the increasing interest in environmental issues and nature protection, the natural environment monitoring, preservation, protection and remediation present the number one priority. From the ecological point of view, the analysis of orthophotos/orthophotomaps present the up-to-date way of ecological stability calculation and monitoring.

2019 ◽  
Vol 37 (1) ◽  
pp. 137-157 ◽  
Author(s):  
Danylo Malyuta ◽  
Christian Brommer ◽  
Daniel Hentzen ◽  
Thomas Stastny ◽  
Roland Siegwart ◽  
...  

Author(s):  
A. Calantropio ◽  
F. Chiabrando ◽  
G. Sammartano ◽  
A. Spanò ◽  
L. Teppati Losè

<p><strong>Abstract.</strong> The recent seismic swarms, occurred in Italy since August 2016, outlined the importance of deepen Geomatics researches for the validation of new strategies aimed at rapid-mapping and documenting differently accessible and complex environments, as in urban contexts and damaged built heritage. In the emergency response, the crucial exploitation of technological advances should obtain and efficiently organize high-scale reliable geospatial data for the early warning, impact, and recovery phases. Fulfilling these issues, among others, the Copernicus EMS, has played by now an important role in immediate and extensive damage reconnaissance, as in the case of Centre Italy. Nevertheless, the use of remote sensing data is still affected by a problem of point-of-view, scale and detectable detail. Nadir images, airborne or satellite, in fact, strongly limited the confidence level of these products. The subjectivity of the operator involvement is still an open issue, both in the first fieldwork assessment, and in the following operational approach of interpretative damage detection and rapid mapping production. To overcome these limits, the introduction of UAV platforms for photogrammetric purposes, has proven to be a sustainable approach in terms of time savings, operators’ safety, reliability and accuracy of results: the nadir and oblique integration can provide large multiscale models, with the fundamental information related to the façades conditions. The presented research, conducted within the Central Italy earthquakes events, will focus on potentialities and limits of UAV photogrammetry in the two documented sites: Pescara del Tronto and Accumoli. Here, the aim is not limited to describe a series of strategies for georeferencing, blocks orientation and multitemporal co-registration solutions, but also to validate the implemented pipelines as a workflow that could be integrated in the operative intervention for emergency response in early impact activities. Thus, it would be possible to use this 3D metric products as a reference-data for significative improvements of reliability in typical visual inspection and mapping, flanking the traditional nadir airborne- or satellite-based products. The UAV acquisitions performed in two damaged villages are displayed, in order to underline the implication of the spatial information embedded in DSM reconstruction and 3D models, supporting more reliable damage assessments.</p>


2011 ◽  
Vol 356-360 ◽  
pp. 2864-2869
Author(s):  
Guang Bin Ma ◽  
Wen Yi Zhang ◽  
Peng Huang

This paper studies the multi-satellites data fast acquisition programming technology for disaster area, and in this paper a disaster monitoring satellite data fast acquisition programming system is established. After the disaster, the system can program the multi-satellites observation schedule for the disaster area quickly and accurately, it can provide important technical support for the satellite data acquisition of the disaster area.


2019 ◽  
Vol 11 (22) ◽  
pp. 2629 ◽  
Author(s):  
Katarzyna Osińska-Skotak ◽  
Aleksandra Radecka ◽  
Hubert Piórkowski ◽  
Dorota Michalska-Hejduk ◽  
Dominik Kopeć ◽  
...  

The process of secondary succession is one of the most significant threats to non-forest (natural and semi-natural open) Natura 2000 habitats in Poland; shrub and tree encroachment taking place on abandoned, low productive agricultural areas, historically used as pastures or meadows, leads to changes to the composition of species and biodiversity loss, and results in landscape transformations. There is a perceived need to create a methodology for the monitoring of vegetation succession by airborne remote sensing, both from quantitative (area, volume) and qualitative (plant species) perspectives. This is likely to become a very important issue for the effective protection of natural and semi-natural habitats and to advance conservation planning. A key variable to be established when implementing a qualitative approach is the remote sensing data acquisition date, which determines the developmental stage of trees and shrubs forming the succession process. It is essential to choose the optimal date on which the spectral and geometrical characteristics of the species are as different from each other as possible. As part of the research presented here, we compare classifications based on remote sensing data acquired during three different parts of the growing season (spring, summer and autumn) for five study areas. The remote sensing data used include high-resolution hyperspectral imagery and LiDAR (Light Detection and Ranging) data acquired simultaneously from a common aerial platform. Classifications are done using the random forest algorithm, and the set of features to be classified is determined by a recursive feature elimination procedure. The results show that the time of remote sensing data acquisition influences the possibility of differentiating succession species. This was demonstrated by significant differences in the spatial extent of species, which ranged from 33.2% to 56.2% when comparing pairs of maps, and differences in classification accuracies, which when expressed in values of Cohen’s Kappa reached ~0.2. For most of the analysed species, the spring and autumn dates turned out to be slightly more favourable than the summer one. However, the final recommendation for the data acquisition time should take into consideration the phenological cycle of deciduous species present within the research area and the abiotic conditions.


Sign in / Sign up

Export Citation Format

Share Document