data acquisition time
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
Alaa Taima Albu-Salih ◽  
◽  
Osama Majeed Hilal ◽  
Hayder Ayad Khudhair ◽  
◽  
...  

Unmanned aerial vehicles (UAVs) is widely used in many military, and civilian applications. UAVs communicate in a Flying Ad hoc Network (FANET) environment where UAVs communicate with each other through an ad hoc network without infrastructure. FANET provide a flexible platform for internet of things (IoT) applications by playing different roles in IoT such as mobile data collector. In fact, in deadline based IoT applications, the deadline is restricted to the critical application level. And as a result, this deadline for data acquisition is not adequate, and FANET cannot collect data from the sensed area with the predetermined deadline. In this paper, a novel efficient data gathering approach for IoT using FANET is proposed. The main objective of this approach is to solve the problem of insufficient deadlines given by FANET in IoT-based deadline applications. Authors will first provide a multi-objective optimization model as a MILP optimization model to solve this problem, and then normalize and add two weighing coefficients to solve the MILP model. The results obtained in the simulation show that the proposed approach can provide efficient data acquisition while guaranteeing the deadline time.


2021 ◽  
Author(s):  
Jihun Kim ◽  
Mathew R. Lowerison ◽  
Nathiya Chandra Sekaran ◽  
Zhengchang Kou ◽  
Zhijie Dong ◽  
...  

AbstractUltrasound localization microscopy (ULM) demonstrates great potential for visualization of tissue microvasculature at depth with high spatial resolution. The success of ULM heavily depends on the robust localization of isolated microbubbles (MBs), which can be challenging in vivo especially within larger vessels where MBs can overlap and cluster close together. While MB dilution alleviates the issue of MB overlap to a certain extent, it drastically increases the data acquisition time needed for MBs to populate the microvasculature, which is already on the order of several minutes using recommended MB concentrations. Inspired by optical super-resolution imaging based on stimulated emission depletion (STED), here we propose a novel ULM imaging sequence based on microbubble uncoupling via transmit excitation (MUTE). MUTE “silences” MB signals by creating acoustic nulls to facilitate MB separation, which leads to robust localization of MBs especially under high concentrations. The efficiency of localization accomplished via the proposed technique was first evaluated in simulation studies with conventional ULM as a benchmark. Then an in vivo study based on the chorioallantoic membrane (CAM) of chicken embryos showed that MUTE could reduce the data acquisition time by half thanks to the enhanced MB separation and localization. Finally, the performance of MUTE was validated in an in vivo mouse brain study. These results demonstrate the high MB localization efficacy of MUTE-ULM, which contributes to a reduced data acquisition time and improved temporal resolution for ULM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Isaac Nape ◽  
Valeria Rodríguez-Fajardo ◽  
Feng Zhu ◽  
Hsiao-Chih Huang ◽  
Jonathan Leach ◽  
...  

AbstractHigh-dimensional entangled states are promising candidates for increasing the security and encoding capacity of quantum systems. While it is possible to witness and set bounds for the entanglement, precisely quantifying the dimensionality and purity in a fast and accurate manner remains an open challenge. Here, we report an approach that simultaneously returns the dimensionality and purity of high-dimensional entangled states by simple projective measurements. We show that the outcome of a conditional measurement returns a visibility that scales monotonically with state dimensionality and purity, allowing for quantitative measurements for general photonic quantum systems. We illustrate our method using two separate bases, the orbital angular momentum and pixels bases, and quantify the state dimensionality by a variety of definitions over a wide range of noise levels, highlighting its usefulness in practical situations. Importantly, the number of measurements needed in our approach scale linearly with dimensions, reducing data acquisition time significantly. Our technique provides a simple, fast and direct measurement approach.


Author(s):  
Elisabeth Heynold ◽  
Max Zimmermann ◽  
Nirjhar Hore ◽  
Michael Buchfelder ◽  
Arnd Doerfler ◽  
...  

Abstract Purpose Glioblastomas (GB) and solitary brain metastases (BM) are the most common brain tumors in adults. GB and BM may appear similar in conventional magnetic resonance imaging (cMRI). Their management strategies, however, are quite different with significant consequences on clinical outcome. The aim of this study was to evaluate the usefulness of a previously presented physiological MRI approach scoping to obtain quantitative information about microvascular architecture and perfusion, neovascularization activity, and oxygen metabolism to differentiate GB from BM. Procedures Thirty-three consecutive patients with newly diagnosed, untreated, and histopathologically confirmed GB or BM were preoperatively examined with our physiological MRI approach as part of the cMRI protocol. Results Physiological MRI biomarker maps revealed several significant differences in the pathophysiology of GB and BM: Central necrosis was more hypoxic in GB than in BM (30 %; P = 0.036), which was associated with higher neovascularization activity (65 %; P = 0.043) and metabolic rate of oxygen (48 %; P = 0.004) in the adjacent contrast-enhancing viable tumor parts of GB. In peritumoral edema, GB infiltration caused neovascularization activity (93 %; P = 0.018) and higher microvascular perfusion (30 %; P = 0.022) associated with higher tissue oxygen tension (33 %; P = 0.020) and lower oxygen extraction from vasculature (32 %; P = 0.040). Conclusion Our physiological MRI approach, which requires only 7 min of extra data acquisition time, might be helpful to noninvasively distinguish GB and BM based on pathophysiological differences. However, further studies including more patients are required.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2255
Author(s):  
Pedro V. Mauri ◽  
Lorena Parra ◽  
Salima Yousfi ◽  
Jaime Lloret ◽  
Jose F. Marin

The irrigation of green areas in cities should be managed appropriately to ensure its sustainability. In large cities, not all green areas might be monitored simultaneously, and the data acquisition time can skew the gathered value. Our purpose is to evaluate which parameter has a lower hourly variation. We included soil parameters (soil temperature and moisture) and plant parameters (canopy temperature and vegetation indexes). Data were gathered at 5 different hours in 11 different experimental plots with variable irrigation and with different grass composition. The results indicate that soil moisture and Normalized Difference Vegetation Index are the sole parameters not affected by the data acquisition time. For soil moisture, the maximum difference was in experimental plot 4, with values of 21% at 10:45 AM and 27% at 8:45 AM. On the other hand, canopy temperature is the most affected parameter with a mean variation of 15 °C in the morning. The maximum variation was in experimental plot 8 with a 19 °C at 8:45 AM and 39 °C at 12:45 PM. Data acquisition time affected the correlation between soil moisture and canopy temperature. We can affirm that data acquisition time has to be included as a variability source. Finally, our conclusion indicates that it is vital to consider data acquisition time to ensure water distribution for irrigation in cities.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1090 ◽  
Author(s):  
Jordi Riu ◽  
Giulia Gorla ◽  
Dib Chakif ◽  
Ricard Boqué ◽  
Barbara Giussani

The miniaturisation of analytical devices, reduction of analytical data acquisition time, or the reduction of waste generation throughout the analytical process are important requirements of modern analytical chemistry, and in particular of green analytical chemistry. Green analytical chemistry has fostered the development of a new generation of miniaturized near-infrared spectroscopy (NIR) spectrometric systems. However, one of the drawbacks of these systems is the need for a compromise between the performance parameters (accuracy and sensitivity) and the aforementioned requirements of green analytical chemistry. In this paper, we evaluated the capabilities of two recently developed portable NIR instruments (SCiO and NeoSpectra) to achieve a rapid, simple and low-cost quantitative determination of commercial milk macronutrients. Commercial milk samples from Italy, Switzerland and Spain were chosen, covering the maximum range of variability in protein, carbohydrate and fat content, and multivariate calibration was used to correlate the recorded spectra with the macronutrient content of milk. Both SCiO and NeoSpectra can provide a fast and reliable analysis of fats in commercial milk, and they are able to correctly classify milk according to fat level. SCiO can also provide predictions of protein content and classification according to presence or absence of lactose.


2020 ◽  
Vol 12 (8) ◽  
pp. 1267 ◽  
Author(s):  
Weile Wang ◽  
Shuang Li ◽  
Hirofumi Hashimoto ◽  
Hideaki Takenaka ◽  
Atsushi Higuchi ◽  
...  

GeoNEX is a collaborative project led by scientists from NASA, NOAA, and many other institutes around the world to generate Earth monitoring products using data streams from the latest Geostationary (GEO) sensors including the GOES-16/17 Advanced Baseline Imager (ABI), the Himawari-8/9 Advanced Himawari Imager (AHI), and more. An accurate and consistent product of the Top-Of-Atmosphere (TOA) reflectance and brightness temperature is the starting point in the scientific processing pipeline and has significant influences on the downstream products. This paper describes the main steps and the algorithms in generating the GeoNEX TOA products, starting from the conversion of digital numbers to physical quantities with the latest radiometric calibration information. We implement algorithms to detect and remove residual georegistration uncertainties automatically in both GOES and Himawari L1bdata, adjust the data for topographic relief, estimate the pixelwise data-acquisition time, and accurately calculate the solar illumination angles for each pixel in the domain at every time step. Finally, we reproject the TOA products to a globally tiled common grid in geographic coordinates in order to facilitate intercomparisons and/or synergies between the GeoNEX products and existing Earth observation datasets from polar-orbiting satellites.


2020 ◽  
Vol 34 (01) ◽  
pp. 792-799 ◽  
Author(s):  
Wentian Li ◽  
Xidong Feng ◽  
Haotian An ◽  
Xiang Yao Ng ◽  
Yu-Jin Zhang

Compressed sensing magnetic resonance imaging (CS-MRI) is a technique aimed at accelerating the data acquisition of MRI. While down-sampling in k-space proportionally reduces the data acquisition time, it results in images corrupted by aliasing artifacts and blur. To reconstruct images from the down-sampled k-space, recent deep-learning based methods have shown better performance compared with classical optimization-based CS-MRI methods. However, they usually use deep neural networks as a black-box, which directly maps the corrupted images to the target images from fully-sampled k-space data. This lack of transparency may impede practical usage of such methods. In this work, we propose a deep reinforcement learning based method to reconstruct the corrupted images with meaningful pixel-wise operations (e.g. edge enhancing filters), so that the reconstruction process is transparent to users. Specifically, MRI reconstruction is formulated as Markov Decision Process with discrete actions and continuous action parameters. We conduct experiments on MICCAI dataset of brain tissues and fastMRI dataset of knee images. Our proposed method performs favorably against previous approaches. Our trained model learns to select pixel-wise operations that correspond to the anatomical structures in the MR images. This makes the reconstruction process more interpretable, which would be helpful for further medical analysis.


Author(s):  
Christopher M. Zarzar ◽  
Padmanava Dash ◽  
Jamie L. Dyer ◽  
Robert Moorhead ◽  
Lee Hathcock

The current study sets out to develop an empirical line method (ELM) radiometric calibration framework for reducing atmospheric contributions in UAS imagery and for producing scaled remote sensing reflectance imagery. Using a MicaSense RedEdge camera flown on a custom-built octocopter, the research reported herein finds that atmospheric contributions have an important impact on UAS imagery. Data collected over the Lower Pearl River Estuary in Mississippi during five week-long missions covering a wide range of environmental conditions was used to develop and test a simplified ELM radiometric calibration framework designed specifically for the reduction of atmospheric contributions to UAS imagery in studies with limited site accessibility or data acquisition time constraints. The framework was effective in reducing atmospheric and other external contributions to UAS imagery. Unique to the proposed radiometric calibration framework is the radiance to reflectance conversion conducted externally from the calibration equations which allows for the normalization of illumination independent from the time of UAS image acquisition and from the time of calibration equations development. This paper presents the simplified ELM radiometric calibration framework that can be used as a time-effective calibration technique to reduce errors in the UAS imagery.


Sign in / Sign up

Export Citation Format

Share Document