scholarly journals Undrained Shear Strength cu and Undrained Elastic Modulus Eu of Anthropogenic Soils from Laboratory Tests

2021 ◽  
Vol 906 (1) ◽  
pp. 012118
Author(s):  
Matylda Tankiewicz ◽  
Joanna Strózyk ◽  
Zofia Zieba

Abstract Undrained shear strength cu and undrained elasticity modulus Eu are one of the basic mechanical parameters describing soil properties in engineering practice. In a simple way cu can be established by fall cone test or, similar as the Eu modulus, can be determined from the stress-strain curve obtained from the uniaxial or triaxial compression tests. The paper presents the results of laboratory tests od cu and Eu parameters carried out on anthropogenic soil in uniaxial compression tests and fall cone tests. The soil used in the study represented different types of materials used in earthworks - containing different share of clay fraction. Tests were provided on the soil in different bulk density and water contents. The paper proposes a method of estimating Eu50 on the basis of cone penetrometer tests. Such test does not require any additional preparation and can be performed directly on the soil compacted in the cylinder of the Proctor’s apparatus, which allows for a quick assessment of the soil elasticity parameters.

Author(s):  
Joanna Stróżyk ◽  
Matylda Tankiewicz

Abstract Undrained shear strength of the heavily consolidated clay. The undrained shear strength (cu) is considered one of the most basic parameter characterizing soils in engineering practice. The particular importance of cu is in the case of clayey soil. This parameter also is the basis for the classification of soil according to the ISO standard. The undrained shear strength usually is determined from unconfined compression test or from triaxial compression test. In the simple way it can be estimated from the fall cone penetrometer test as index parameter. In the presented work the results of unconfined compression tests for very stiff, heavily consolidated clay were shown. All analysed clay specimens were taken from the large depth, up to 303 m below terrain level. The tests results: undrained shear strength (cu) and unconfined compression strength (qu) were discussed in the relation on in situ consolidation stress, Atterberg’s limits and the indicatory test - fall cone test results


Author(s):  
Chee K. Wong ◽  
Martin Lun ◽  
Ron C.K. Wong

This paper presents an interpretation technique to quantify the effects of compaction state and matric suction on the undrained shear strength of compacted clay under confined undrained triaxial compression. This novel technique is based on the mathematical frameworks of SHANSEP (Stress History and Normalized Soil Engineering Property) method for saturated soil and BBM (Barcelona Basic model) for unsaturated soil. Test data of compacted Calgary till were analyzed and interpreted using the proposed technique. The interpretation technique is very useful in delineating the relative impacts of the factors on the behavioral trends in measured undrained shear strength. It was found that in addition to the initial compacted void ratio and suction, soil structure and failure mode exert significant influence on the undrained shear strength of compacted clay. This technique is attractive to engineering practitioners because the confined undrained compression tests (with no pore air and water pressure measurement) are much simpler and less time consuming compared to rigorous laboratory tests on unsaturated soil.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Jianwen Ding ◽  
Xusong Feng ◽  
Yupeng Cao ◽  
Sen Qian ◽  
Feng Ji

Consolidated undrained triaxial compression tests were performed to investigate the shear strength behavior of the solidified dredged materials (SDM). The variation law of deviator stress and excess pore water pressure with the increase of the applied confining pressure was investigated. It is found that the shear strength envelope is consisted of two lines, and there exists a transitional stress on the intersection point. The undrained shear strength develops slightly with the increase of applied normal stress in the preyield state. However, the undrained shear strength increases significantly in the postyield state, and the strength envelope is nearly a straight line with the extension through the origin. Based on the triaxial test data and the binary medium model, a strength criterion considering strength evolution mechanism is proposed and the relevant parameters of the strength criterion were discussed. Comparisons of the predicted results and experimental data demonstrate that the proposed strength criterion can properly describe the strength evolution rules of the SDM.


2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


Author(s):  
Simon Rabarijoely

The use of dilatometer test for the determination of undrained shear strength in organic soils The use of dilatometer test for the determination of undrained shear strength in organic soils. In engineering practice the empirical correlations or charts are often use to determine soil properties for design calculations. The DMT tests results are analysed on the basis of the empirical formulas proposed by Marchetti (1980). In this paper the new chart to determine the τfu of organic mud was proposed. The chart presents the relationships between dilatometer readings (p0 - u0), (p1 - u0), σ'v0 and τfu. The chart will be helpful in geotechnical design of embankments constructed on organic subsoil.


2021 ◽  
Vol 27 (10) ◽  
pp. 20-33
Author(s):  
Abeer F. Hussein ◽  
Ahmed S. Ali ◽  
Abbas J. Al-Taie

Plastic soil exhibits unfavorited geotechnical properties (when saturation), which causes negative defects to engineering structures. Different attempts (included various materials) were conducted to proffer solutions to such defects by experimenting in practical ways. On one hand, these attempts aimed to improve the engineering characteristics of plastic soil, and on the other hand, to use problematic waste materials as a stabilizer, like cement kiln dust, and to reduce environmental hazards. This paper explored the shrinkage, plasticity, and strength behavior of plastic soil enhanced with cement dust. The cement dust contents were 0%, 5%, 10%, 15% and 20% by dry weight of soil. An experimental series of shrinkage and plasticity tests and unconfined compression tests were carried out to explore the effects of cement dust on the quantitative amount of shrinkage, plasticity characteristics, and shear strength experienced by plastic soil. The effects of curing on soil strength were also investigated. The finding of this paper showed that the critical behavior and plasticity of plastic soil could be reduced by mixing the soil with 15% or 20% of cement dust. The undrained shear strength, cu, of plastic soil-cement dust mixtures increased with the increasing dust content up to 20%. In fact, this strength was affected by the curing period. The best enhancement was attained when the content of cement dust was 20%, and the undrained shear strength was increased more than three times at this content.


2021 ◽  
Author(s):  
Iyad Alkroosh ◽  
◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee ◽  
...  

This study investigated the influence of sand content on the mechanical behaviour of a low plasticity clay found in Iraq. Samples were prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the weight of the clay. Standard Proctor and unconfined compression tests were carried out and the optimum moisture content, maximum dry density, and undrained shear strength were determined. The results showed a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reached was 1.90 gm/cm3 corresponding to an optimum moisture content of 12%. In addition, it was also found that the undrained shear strength was inversely proportional to the increase of the percentage of sand. Thus, the dry density of the clay could be increased well above 1.70 g/cm3, which is the minimum dry density accepted as a compacted subgrade according to the Iraqi General Specifications for Roads and Bridges (2003); hence, the rejected low plasticity clay could be utilised by mixing with sand. The reasons for the increase of the dry density and the decrease of the undrained shear strength has been extensively discussed in the paper.


2003 ◽  
Vol 40 (5) ◽  
pp. 949-963 ◽  
Author(s):  
S Micic ◽  
J Q Shang ◽  
K Y Lo

Originating from the problem facing offshore foundation engineering, the present study is focused on using electrokinetics to enhance the load-carrying capacity of skirted foundations embedded in soft marine deposits. An experimental study was carried out in a model tank having dimensions of 150 cm × 75 cm × 70 cm. The experiments were conducted on the Welland River sediment mixed with a high salinity solution that simulates the composition of seawater. A steel cylinder of 320 mm in diameter was embedded in the sediment to represent a skirted foundation. Electrodes were installed around the steel cylinder, and a voltage of 5.2 V was applied over 28 days with polarity reversal. The load-carrying capacity of the steel cylinder and the undrained shear strength of the adjacent soil were measured after the electrokinetic treatment. The effect of electrokinetics is evaluated by comparing a series of test results performed on the untreated and treated soil. The load-carrying capacity of the steel cylinder and the undrained shear strength of the adjacent soil increased up to three times after treatment. The study also shows that electrokinetics can regain and further enhance the load carrying capacity of the embedded skirted foundation model after failure. With further development, the technology has the potential to be applied in offshore engineering practice to increase the load-carrying capacity of skirted foundations installed in soft clayey sediments.Key words: electrokinetics, skirted foundations, soft marine clay, load-carrying capacity, soil improvement.


Sign in / Sign up

Export Citation Format

Share Document