Effect of sand percentage on the compaction properties and undrained shear strength of low plasticity soft clay

Author(s):  
Iyad Alkroosh ◽  
◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee ◽  
...  

This study investigated the influence of sand content on the mechanical behaviour of a low plasticity clay found in Iraq. Samples were prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the weight of the clay. Standard Proctor and unconfined compression tests were carried out and the optimum moisture content, maximum dry density, and undrained shear strength were determined. The results showed a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reached was 1.90 gm/cm3 corresponding to an optimum moisture content of 12%. In addition, it was also found that the undrained shear strength was inversely proportional to the increase of the percentage of sand. Thus, the dry density of the clay could be increased well above 1.70 g/cm3, which is the minimum dry density accepted as a compacted subgrade according to the Iraqi General Specifications for Roads and Bridges (2003); hence, the rejected low plasticity clay could be utilised by mixing with sand. The reasons for the increase of the dry density and the decrease of the undrained shear strength has been extensively discussed in the paper.

2021 ◽  
Vol 9 (1) ◽  
pp. 16-20
Author(s):  
Iyad Alkroosh ◽  
Ali Al-Robay ◽  
Prabir Sarker ◽  
Saif Alzabeebee

This paper investigates the influence of sand content on the mechanical behavior of a low plasticity clay that collected from south of Iraq (Sumer town). Samples have been prepared with sand contents of 0%, 10%, 20%, 30%, and 40% of the clay weight. Standard Proctor and unconfined compression tests have been carried out and the optimum moisture content, maximum dry density, and undrained shear strength have been determined. The results show a gradual increasing trend of the maximum dry density with the increase of the sand content up to 30%. The highest dry density reaches 1.90 g/cm3 corresponding to an optimum moisture content of 12%. In addition, this paper shows that the undrained shear strength is inversely proportional to the increase of the percentage of sand. The results of this work provide a useful addition to the literature regarding the behaviour or low plasticity clay-sand mixture.


2013 ◽  
Vol 710 ◽  
pp. 348-351
Author(s):  
Zheng Rong Zhao ◽  
Lei Wang ◽  
Hong Xia Yang

Through compaction test discussed about the compaction characteristics of expansive soil by lime modified in middle of Shandong province. The results show that the optimum moisture content is lower when the expansive soil is cured by dry compaction method, and the maximum dry density is higher. Compaction curve appeared the phenomenon of two peaks when expansive soil is cured by wet compaction method.Lime content of lime improved expansive soil, particle size composition, age and compaction function have influence on compaction curve.With the increase of the quantity of lime, the optimum moisture content increases, the maximum dry density decreases. With the age growth, the optimum moisture content increase slightly,the maximum dry density decreases slightly. The bigger the compaction work, the smaller moisture content is, the larger the maximum dry density is.


2018 ◽  
Vol 250 ◽  
pp. 01008
Author(s):  
Tuan Noor Hasanah Tuan Ismail ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Ismail Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
...  

Soils at many sites do not always have enough strength to bear the structures constructed over them and some of the soil may need to be stabilized in order to improve their geotechnical properties. In this paper, routine laboratory tests were critically carried out to investigate the efficacy of lignin in improving the strength behaviour of the soils. Two different soil samples (laterite and kaolin) were studied and mixed with different proportions of lignin (2% and 5% of dry weight of soil), respectively. Unconfined Compressive Strength (UCS) characteristics evaluated in this study were done on samples at their maximum dry density and optimum moisture content (obtained from compaction tests). The UCS tests on all the specimens were carried out after 0, 7, 15, 21 and 30 days of controlled curing. The research results showed that the addition of lignin into kaolin reduced its maximum dry density while giving progressively higher optimum moisture content. Contrarily, with the laterite soil, both maximum dry density and optimum moisture content simultaneously increased when lignin was added into the soils. The UCS results showed that the the stabilized laterite with 2% lignin continued to gain strength significantly at a fairly steady rate after 7 days. Unfortunately, lignin did not show a significant effect in kaolin.


2014 ◽  
Vol 20 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Vahid Ayan ◽  
Mukesh C. Limbachiya ◽  
Joshua R. Omer ◽  
Seyyed Masoud Nasr Azadani

Study was recently conducted at Kingston University to assess the suitability of using recycled concrete aggregate (RCA) and reclaimed asphalt pavement (RAP) in unbound subbase mixtures. The results showed that the use of 100% recycled aggregates increased the optimum moisture content and decreased the maximum dry density of the sub-base materials in comparison with natural aggregates. Moreover, the replacement of RCA by reclaimed asphalt pavement by 50% decreased the optimum moisture content and increased the maximum dry density in proportion to 100% RCA. The effects of physical properties on 0% air void and compaction curve were discussed for each type of subbase. The CBR values of the subbase materials prepared with 100%RCA is lower than subbase mixture with 100% natural aggregates. The CBR further decreased for replaced subbase with RAP so that 50%RCA + 50%RAP is not suitable for unbound subbase from the point of CBR view. In each mix the trend of CBR value was investigated in terms of water content. This research found some significant practical points to use in site works.


2016 ◽  
Vol 53 (4) ◽  
pp. 578-588 ◽  
Author(s):  
R.P. Chen ◽  
B. Zhu ◽  
W.J. Ni

Upheaval buckling of pipelines caused by thermal- and pressure-induced loading is an important issue in pipeline design. The uplift capacity of pipelines is determined by the pipe–soil interaction during pipeline upheaval in soil. Pipelines to be installed in soft clay are usually placed into trenches and then backfilled. In this paper, a set of test devices were developed and a series of full-scale model tests were carried out on a pipe segment buried in lumpy soft clay backfill, including backfilling tests, load-controlled uplift tests, and a displacement-controlled test. Eight total pressure transducers were embedded in the wall of the pipe segment to measure soil pressures on the pipe segment, and five linear variable differential displacement transducers (LVDTs) were arranged to record the vertical displacement of the pipe segment and the surface of the soft clay ground. The stabilizing force keeping the pipe segment in place during the backfilling process was found to fit a nearly linear relationship with the dimensionless undrained shear strength of soft clay. The variation of soil pressures on the pipe segment during uplift loading was significantly affected by the buried depth of the pipe segment and the undrained shear strength of the soil. For all present load-controlled tests in lumpy soft clay backfill, the test ultimate uplift resistances were only about 19%–81% of the results calculated by the Det Norske Veritas approach. Mainly due to the voids’ compression, shearing and strain softening of lumpy soft clay backfill, the difference between initial and stable displacements in a loading step for a load-controlled test or initial and stable loads in a displacement step for a displacement-controlled test is remarkable. The limits of uplift resistances are recommended for the instant and sustaining behaviors of the pipe segment, respectively.


Sign in / Sign up

Export Citation Format

Share Document