scholarly journals Effectiveness of snap traps on capturing rodent and small mammals in rural area of two provinces (Yogyakarta and West Java) in Indonesia

2021 ◽  
Vol 913 (1) ◽  
pp. 012021
Author(s):  
N A Herawati ◽  
T Purnawan

Abstract The study was conducted to determine the effectiveness of snap traps on capturing the rodents and small mammals in two provinces (Yogyakarta and West Java). A small rural area surrounded by large scale ricecrops which indicate rodent damage seasonally was selected as the study site. The trappings were executed during the period of November 2018 – August 2020. Consecutive trappings were performed in two regions using snap traps baited with fresh salty fish and roasted coconut. Around 40-65 traps were set in West Java study sites and 60-65 traps in Yogyakarta for every single trap night, respectively. We checked the captured animals in the early morning and collected them for identification and sexing. In the late afternoon we continued with cleaning of the traps and put in the new same type of bait. A total of 517 animals were obtained with the proportion of the two sexes was almost the same (45.45% males:54.40% females). Based on the physical characteristics, those captured animals were three rodent species (Rattus argentiventer, Rattus tanezumi, Bandicota indica) and one species of insectivore (Suncus murinus). Regarding trapping rate of success, Yogyakarta denoted average values (21.38% in the first trapping and 26.04% from the second trapping) compared to West Java which was only accounted for half of them (11.31% and 11.24% from the first and second trapping, respectively). The heterogeneous habitat configuration probably allowed this situation to occur in Yogyakarta. Moreover, rodent control activities in West Java were implemented more intensively compared to Yogyakarta.

2021 ◽  
Vol 9 (3) ◽  
pp. 658
Author(s):  
Inga Böge ◽  
Martin Pfeffer ◽  
Nyo M. Htwe ◽  
Pyai P. Maw ◽  
Siriwardana Rampalage Sarathchandra ◽  
...  

(1) Background: Bartonella spp. are zoonotic bacteria with small mammals as main reservoirs. Bartonella spp. prevalence in small mammals from Myanmar and Sri Lanka are yet unknown. (2) Methods: Small mammals were snap trapped in Sri Lanka and Myanmar in urban surroundings. Spleens-derived DNA was screened for Bartonella spp. using conventional PCR based on three target genes. Positive samples were sequenced. (3) Results: 994 small mammals were collected comprising 6 species: Bandicota bengalensis, Bandicota indica, Rattus exulans, Rattus rattus, Mus booduga, and Suncus murinus. In Myanmar, the Bartonella prevalence in Bandicoot rats (68.47%) was higher than in Rattus rattus (41.67%), Rattus exulans (21.33%), and Suncus murinus (3.64%). Furthermore the prevalence in Myanmar (34%, n = 495) was twice as high as in Sri Lanka (16%, n = 499). In Sri Lanka, Bartonella spp. occurred almost exclusively in R. rattus. In Myanmar, Bartonella kosoyi was mainly detected (56%), followed by Bartonella sp. KM2529 (15%), Bartonella sp. SE-Bart D (12%) and Bartonella henselae (1%). In Sri Lanka, B. phoceensis (60%) and Bartonella sp. KM2581 (33%) were predominant. (4) Conclusions: Bartonella spp. were detected in all investigated small mammal species from Myanmar and Sri Lanka for the first time. Bartonella kosoyi and B. henselae are zoonotic. As these small mammals originated from urban settlements, human bartonellosis seems likely to occur.


2011 ◽  
Vol 89 (12) ◽  
pp. 1214-1222 ◽  
Author(s):  
Ashley A.D. McLaren ◽  
Lenore Fahrig ◽  
Nigel Waltho

Previous studies suggest the gap in forest cover generated by roads contributes to the barrier effect of roads on movement of forest-dwelling small mammals. However, it is not known if vegetated medians of divided highways affect movement of small mammals by reducing the effective highway width. The purpose of our study was to determine whether the type of vegetation cover in the median (treed or grassy) or median width affects small-mammal crossings of divided highways. At 11 study sites varying in median cover type and width, we live-trapped small mammals next to one side of the highway and translocated them to the opposite side of the highway using a standardized translocation distance. In total, 24% of translocated individuals were recaptured on the side of the highway of initial capture, i.e., they had moved across the entire highway. This was significantly lower than what would have been expected in the absence of the highway (58%). The overall probability of recapturing a translocated individual was not significantly related to median cover type or width. Our results suggest that efforts to mitigate the barrier effect of highways on small mammals cannot be accomplished by altering median vegetation type and width.


Author(s):  
Asaf Dagan ◽  
Colin Gillin ◽  
Kira Marciniak

Sylvatic plague (Yersinia pestis) and tularemia (Francisella tularensis) are infectious bacterial diseases that can be transmitted from wild mammals to humans by insects or through direct contact. Although cases of plague and tularemia have been reported in the southwest, a comprehensive understanding of the prevalence, distribution and dynamics of these diseases is lacking. During the months of June and July 2000 we sampled small mammals in Grand Teton National Park (GTNP) for antibodies of these zoonotic diseases. This survey was conducted in conjunction with a large scale population dynamics study, lead by Dr. Brian Miller, Denver Zoological society, and Dr. Hank Harlow, Department of Zoology and Physiology, University of Wyoming. A published survey of plague and tularemia has not been conducted in GTNP. In 1996, Dr. Fredrick Jannett looked for plague in the genus Microtus and found low incidence


2014 ◽  
Vol 23 (6) ◽  
pp. 755 ◽  
Author(s):  
Janice L. Coen ◽  
Philip J. Riggan

The 2006 Esperanza Fire in Riverside County, California, was simulated with the Coupled Atmosphere–Wildland Fire Environment (CAWFE) model to examine how dynamic interactions of the atmosphere with large-scale fire spread and energy release may affect observed patterns of fire behaviour as mapped using the FireMapper thermal-imaging radiometer. CAWFE simulated the meteorological flow in and near the fire, the fire’s growth as influenced by gusty Santa Ana winds and interactions between the fire and weather through fire-induced winds during the first day of burning. The airflow was characterised by thermally stratified, two-layer flow channelled between the San Bernardino and San Jacinto mountain ranges with transient flow accelerations driving the fire in Cabazon Peak’s lee. The simulation reproduced distinguishing features of the fire including its overall direction and width, rapid spread west-south-westward across canyons, spread up canyons crossing its southern flank, splitting into two heading regions and feathering of the fire line. The simulation correctly depicted the fire’s location at the time of an early-morning incident involving firefighter fatalities. It also depicted periods of deep plume growth, but anomalously described downhill spread of the head of the fire under weak winds that was less rapid than observed. Although capturing the meteorological flow was essential to reproducing the fire’s evolution, fuel factors including fuel load appeared to play a secondary role.


2008 ◽  
Vol 8 (3) ◽  
pp. 117-122 ◽  
Author(s):  
Carlos Frederico Duarte Rocha ◽  
Helena Godoy Bergallo ◽  
Carla Fabiane Vera y Conde ◽  
Emerson Brum Bittencourt ◽  
Hilda de Carvalho Santos

We analyzed richness, composition and mass of snakes in two sites in the Atlantic forest of Ilha do Cardoso (25º 03' S and 47º 53' W), an island (22,500 ha), Cananéia municipality, São Paulo State, Brazil. A monthly index of arthropod availability (in mm³) was estimated in each site through capture rates in pit-fall traps. Fallen fruits were collected along trails in the study sites (mass of fruit gave an index of fruit availability) and small mammals were sampled in grids with 120 traps which covered the lowland (5.2 ha) and in the slope forests (3.6ha). The abundance and mass of small mammals were standardized for the size of each sampled area (in g.ha-1). To sample snakes we established 20 pit-fall traps in each area and performed monthly transects in four consecutive days (totaling 1000 m long) along trails in the study sites. Snakes found were measured, weighted marked and released. Abundance and total mass of snakes were standardized by the size of each area. The areas differed consistently in in the productivity of arthropods, fruits and small mammals, and also in richness, composition and total mass of snakes. We found 36 individuals (total mass = 9884 g) of 12 snake species belonging to three Families (Colubridae, Elapidae and Viperidae) in the lowland forest, whereas in the slope forest we sampled only 9 individuals of 2 species (total mass = 1820 g). Our results suggest that the area of lowland forest, showing higher productivity of arthropods, fruits and small mammals, maintains a snake community with a higher richness, diversity and biomass than its slope forest counterpart.


2021 ◽  
Author(s):  
Alexandre Gauvain ◽  
Ronan Abhervé ◽  
Jean-Raynald de Dreuzy ◽  
Luc Aquilina ◽  
Frédéric Gresselin

<p>Like in other relatively flat coastal areas, flooding by aquifer overflow is a recurring problem on the western coast of Normandy (France). Threats are expected to be enhanced by the rise of the sea level and to have critical consequences on the future development and management of the territory. The delineation of the increased saturation areas is a required step to assess the impact of climate change locally. Preliminary models showed that vulnerability does not result only from the sea side but also from the continental side through the modifications of the hydrological regime.</p><p>We investigate the processes controlling these coastal flooding phenomena by using hydrogeological models calibrated at large scale with an innovative method reproducing the hydrographic network. Reference study sites selected for their proven sensitivity to flooding have been used to validate the methodology and determine the influence of the different geomorphological configurations frequently encountered along the coastal line.</p><p>Hydrogeological models show that the rise of the sea level induces an irregular increase in coastal aquifer saturations extending up to several kilometers inland. Back-littoral channels traditionally used as a large-scale drainage system against high tides limits the propagation of aquifer saturation upstream, provided that channels are not dominantly under maritime influence. High seepage fed by increased recharge occurring in climatic extremes may extend the vulnerable areas and further limit the effectiveness of the drainage system. Local configurations are investigated to categorize the influence of the local geological and geomorphological structures and upscale it at the regional scale.</p>


The Auk ◽  
2000 ◽  
Vol 117 (3) ◽  
pp. 748-759 ◽  
Author(s):  
Caleb E. Gordon

Abstract I used mark-recapture analysis and radio telemetry to characterize winter movement patterns of six grassland sparrows in southeastern Arizona. Mark-recapture data were generated by banding birds captured during repeated flush-netting sessions conducted on a series of 7-ha plots over three consecutive winters. This resulted in 2,641 captures of 2,006 individual sparrows of the six species. Radio telemetry was conducted concurrently on 20 individuals of four of these species. Recapture data and radio telemetry indicated that Cassin's Sparrow (Aimophila cassinii) and Grasshopper Sparrow (Ammodramus savannarum) were the most sedentary, followed by Baird's Sparrow (Ammodramus bairdii), Vesper Sparrow (Pooecetes gramineus), Savannah Sparrow (Passerculus sandwichensis), and Brewer's Sparrow (Spizella breweri). Grasshopper, Baird's, Savannah, and Vesper sparrows tended to remain within fixed home ranges during winter. With the exception of Savannah Sparrows, whose movement behavior varied among study sites, movement patterns remained constant within species across years and study sites despite radical fluctuations in the absolute and relative abundances of all species. Interspecific differences in movement pattern suggest that species in this system partition niche space according to the regional-coexistence mechanism. Abundances of the most sedentary species, Cassin's, Grasshopper, and Baird's sparrows, were poorly or negatively correlated with summer rainfall at the between-year landscape scale, whereas abundances of the more mobile Savannah, Vesper, and Brewer's sparrows were strongly positively correlated. This is consistent with the theoretical prediction that movement constrains large-scale habitat selection, favoring mobile species in fragmented environments.


Sign in / Sign up

Export Citation Format

Share Document