scholarly journals A Proposed Improvement of Belanti II Tidal Irrigation Scheme, Kalimantan, to Support Leaching of Acid Sulphate Soil Reclamation

2021 ◽  
Vol 930 (1) ◽  
pp. 012011
Author(s):  
A Setiawan ◽  
B S Wignyosukarto ◽  
A P Rahardjo ◽  
Yakubson

Abstract The reclamation process of acid sulphate soil of the Belanti II tidal irrigation scheme remains unfinished. During ebb tide, the upstream acidic drainage water retains and settles in the irrigation canals. During high tide, the acidic water flows back into some parts of the agricultural land and reduces rice productivity. The measured pH is about 2.5 ~ 3.5 and the measured electric conductivity is about 0,25 ~ 0,35 mS/cm. Sedimentation in the middle to the end of the primary, secondary, and collector canals and tidal pond at the upstream end of the primary canal, preventing the leaching process of sulfuric acid soil. Primary canal normalization as an alternative solution to increase the capability of acidity leaching is proposed. Leaching the acidic soil of Belanti II irrigated area of 3.976 ha requires 500 m3/ha/day of freshwater, equivalent to 1.998.000 m3/day. The one-dimensional HEC RAS mathematical model is used to evaluate the hydraulics performance to support the leaching process. The hydraulic analysis was carried out using two tidal cycles on the existing channel and the normalized channel. Channel normalization has succeeded in reducing the water supply deficit to support the leaching process from 39% to 9%.

2008 ◽  
Vol 14 (1) ◽  
pp. 112
Author(s):  
V. KUSTULA ◽  
A. WITICK ◽  
J. MERILÄINEN

A successive alkalinity producing system (SAPS) has been investigated as a potential passive treatment option for acid, metal containing runoff from acid sulphate soil. A pilot-scale system was installed at an agricultural land site in Rintala embankment area in mid-western Finland. The experimental layout consists of three parallel treatment units: two different SAPS cells and one limestone-filled cell for comparison of performance. The SAPS cells are composed of a bottom layer of limestone and a top layer of compost supplemented with sand. One of the SAPS cells contains sulphate-rich, waste gypsum mixed with the compost layer in order to enhance the metal reduction by sulphate reducing-bacteria. Over a 3 year period on average between 6–12 l min-1 of water from a nearby drain receiving acid drainage was directed to the system. The quality of the influent water was highly variable: pH 4.1–7.1, aluminium 0.061–29 mg l-1, iron 0.046–22 mg l-1, manganese 1.9–23 mg l-1. Flow through the cells increased the pH and decreased the acidity and concentrations of Al and Fe. Manganese concentrations did not change significantly (P < 0.05, paired t-test) in any of the treatment cells. The current results do not demonstrate the advantages of a SAPS system when compared to a limestone bed and the present implementation is not considered to be an effective treatment method for acid drainage water. Therefore, to increase the alkalinity production of SAPS cells, the system will be modified to increase the contact time of water with limestone.;


2021 ◽  
Vol 930 (1) ◽  
pp. 012017
Author(s):  
A D F Firstyadi ◽  
B S Wignyosukarto ◽  
Istiarto ◽  
S Purboseno

Abstract The Palingkau Swamp Irrigation Scheme SP1 SP2 SP3 extends tidal irrigation between Kapuas Murung River and Kapuas River, which local peoples developed. The development of the new agricultural land behind the old tidal irrigation system creates oxidation of potential acid sulphate (FeS2) soil. The result of the leaching process polluted local’s agricultural area causes the decrease land productivity. The field observation recorded the water pH ranges between 3.9 - 5.3; 3.7 - 4.31 at the handil; 2.5 - 4 at the collector channels; and 2.8 - 3.6 at the primary channels. Good water management is needed to overcome these problems, both at the new irrigation system and handil. The HECRAS mathematical model is used to evaluate water circulation in the system and its reliability. The Efforts to normalize the handil impact increasing the amount of water entering the handil although it is not significant. Moreover, it still cannot meet the water demand for the leaching process in the network system by 2.06 million m3/day. It is necessary to increase the capacity of the channel to allow freshwater flow from the river for the leaching process in the network system.


2018 ◽  
Vol 16 (3) ◽  
pp. 448-456 ◽  
Author(s):  
Tanzin Chowdhury ◽  
Md Arifur Rahman ◽  
Kamrun Nahar ◽  
Md. Akhter Hossain Chowdhury ◽  
Md. Sirajul Islam Khan

Plant requires suitable soil for higher yield, quality growth and desired crop productivity that differ with soil characteristics, availability of the nutrient elements and overall soil fertility. Aloe vera, a documented medicative plant, is used for numerous medical and cosmetic applications since very beginning of the civilization. An experiment was conducted in Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh to find out the most appropriate soil for A. vera cultivation. Seven types of soils viz., acid, calcareous, non-calcareous, charland, saline, peat and acid sulphate were collected from different locations of Bangladesh. Eighteenth month old Aloe vera seedlings were collected from Shomvogonj, Mymensingh and planted during last week of May, 2017 following completely randomized design (CRD) with three replications. Most of the soils were light grey in colour, acidic to neutral in nature and clay to clay loam in texture except non-calcareous and charland soils. Bulk density, particle density and field capacity ranged from 1.23−1.45 g cm−3, 2.20−2.58 g cm−3 and 27.07−30.20%, respectively. The ranges of pH, EC and organic matter contents were 3.8 to 7.8, 0.25 to 14.04 dS m−1 and 0.88 to 16.40%, respectively. The organic matter content was found as low to moderate except peat soil. Total N, exchangeable K, available P and S contents ranged from 0.05−0.95%, 0.17−0.73 cmol kg−1, 3.09−12.10 and 11.06−735.12 µg g−1 soil, respectively. Growth and leaf biomass yield of A. vera was significantly influenced by different soil types. The highest plant height, leaf number, leaf area and leaf fresh weight were recorded from the plant grown in non-calcareous soil whereas maximum fresh gel weight, dry leaf weight and yield increase over acid sulphate soil were found from the plant grown in calcareous soil. The highest fresh leaf gel weight (907 g plant−1) was obtained from the plant grown in calcareous soil which was identical with the gel weight (880 g plant−1) of the plant grown in acid soil. The yield increase of acid, non-calcareous, charland, saline1 (6.32 dS m−1) and saline2 (8.14 dS m−1) soils over acid sulphate soil were 718, 712, 394, 144 and 86%, respectively. The overall performance of the soils in relation to leaf biomass yield was of the following order: calcareous ≥ acid ≥ non-calcareous > charland > saline1 (6.32 dS m−1) > saline2 (8.14 dS m−1) > peat > acid sulphate soil. The results suggest that farmers could be advised to grow A. vera either in calcareous or acid soils of Bangladesh. Since calcareous and non-calcareous soils are mostly used for growing cereals, pulses, cash crop like sugarcane, fruits etc., acid soil could be used for cultivating this important medicinal crop considering the socio-economic conditions of the country. J. Bangladesh Agril. Univ. 16(3): 448–456, December 2018


2020 ◽  
Vol 8 (2) ◽  
pp. 157
Author(s):  
Juhrian Juhrian ◽  
Fadly H. Yusran ◽  
Raihani Wahdah ◽  
Bambang J. Priatmadi

<p><span style="font-size: small;"><span>Making acid sulphate soils as paddy fields is a wise choice because it can prevent the soil from oxidizing which occurs in acidification of the soil. The use of biochar as an amendment to the land has long been known since the discovery of terra preta since 1870 in the Amazon Basin as the Amazon dark earth. Because biochar soil amendments are rich in C-organics, have a buffering capacity and can increase soil acidity, are able to absorb heavy metals, and are able to retain water and nutrients for soil organisms. Meanwhile, lime has also been known as an acid sulphate soil amendment in Rome 2000 years ago to balance the acidity in agricultural land. This has been practiced for centuries until now. Though compost or organic soil can be traced more than 2000 years ago. Soil organic matter (SOM) is formed from the remains of animals and plants. It contains C and many nutrients such as N, P, and K. Based on the description above, the author wants to combine the three ingredients in the review, especially in relation to acid sulphate soils.</span></span></p>


1970 ◽  
Vol 5 (3) ◽  
pp. 344-354
Author(s):  
Perdana Abdi ◽  
Asmarlaili Sahar Hanafiah ◽  
Hamidah Hanum

Acid sulphate soil has potential to be good agricultural land if the condition meets. Therefore This research was conduct to learn the effect of several amendment, fertilizer and sulphate reduction bacteria (SRB) on the growth of oil palm seedlings and increasing nutrient content of oil plam seedlings.This research did on april 2017 until desember 2017, and used acid sulphate soil from Unit Payarambe PT. Mopoli Raya Aceh Tamiang Indonesia, and used oil palm seedling (3 month old). This research used Randomized Block Design with 3 treatments : Several amandment (without amandement, empty fruit bunches oil palm 30 tonnes/ha, Dolomie 15,8 tonnes/ha), fertilizers (without fertilizer, given fertilizer 2,5grams/seedling), and sulphate reduction bacteria (without SRB and given SRB 15 ml with total population 108/cc) with 6 replication. The results showed that the application empty fruit bunches oil palm compost 30 tonnes/ha increased plant height and stem statiscally significant after 28 weeks application. The best treatment was empty fruit bunches oil palm compost 30 tonnes/ha combined with inoculum of sulphate reduction bacteria.


2013 ◽  
Vol 375 (1-2) ◽  
pp. 149-158 ◽  
Author(s):  
Kenedy E. Epie ◽  
Seija Virtanen ◽  
Arja Santanen ◽  
Asko Simojoki ◽  
Frederick L. Stoddard

2000 ◽  
Vol 41 (7-12) ◽  
pp. 319-326 ◽  
Author(s):  
F.J Cook ◽  
W Hicks ◽  
E.A Gardner ◽  
G.D Carlin ◽  
D.W Froggatt

Sign in / Sign up

Export Citation Format

Share Document