scholarly journals Flow and sediment transport in a sharp river bend using a 3D-RANS model

2021 ◽  
Vol 930 (1) ◽  
pp. 012033
Author(s):  
D Sisinggih ◽  
S Wahyuni ◽  
A Rasyid

Abstract Flow dynamics and sediment transport in a river bend have recently been studied using experimental and numerical investigations. A three-dimensional numerical modeling model named NaysCUBE was used in this study to describe the flow pattern and process of sediment transport in a sharp river bend as a complement to the prior work of the physical hydraulic model. The model uses the RANS equation to simulate flow where a fully complex 3D flow is governed. Despite the limitations of the RANS model, NaysCUBE well reproduces the flow pattern and turbulence phenomena in a movable bed channel with sharp curvature. Compared with data from a prior experiment, the morphological adjustment is simulated sufficiently. The three-dimensional flow structures are useful for determining the appropriate countermeasures for local scouring and riverbank protection.

2018 ◽  
Vol 40 ◽  
pp. 03015
Author(s):  
Akihiro Tominaga ◽  
Naohiko Sassa ◽  
Yuji Hara ◽  
Yuka Kuno

The existence of a planform vortex is considered to be the cause of development and sustention of large-scale local scouring in the Kiso River. In order to make clear the 3D flow structures in this deep local scour, we conducted a field observation and model experiments. From the result of ADCP set on the bottom of the scour hole, the velocity in the hole was increasing and the vertical vortex was developing, with an increase of river discharge. It is indicated that considerable magnitude of velocity was generated even near the bottom by the action of vertical vortex. This vortex was recognized in the model experiments. Consequently, the vertical vortex contributes to develop and maintain the large-scale local scouring.


Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Juan Du ◽  
Feng Lin ◽  
Jingyi Chen ◽  
Chaoqun Nie ◽  
Christoph Biela

Numerical simulations are carried out to investigate flow structures in the tip region for an axial transonic rotor, with careful comparisons with the experimental results. The calculated performance curve and two-dimensional (2D) flow structures observed at casing, such as the shock wave, the expansion wave around the leading edge, and the tip leakage flow at peak efficiency and near-stall points, are all captured by simulation results, which agree with the experimental data well. An in-depth analysis of three-dimensional flow structures reveals three features: (1) there exists an interface between the incoming main flow and the tip leakage flow, (2) in this rotor the tip leakage flows along the blade chord can be divided into at least two parts according to the blade loading distribution, and (3) each part plays a different role on the stall inception mechanism in the leakage flow dominated region. A model of three-dimensional flow structures of tip leakage flow is thus proposed accordingly. In the second half of this paper, the unsteady features of the tip leakage flows, which emerge at the operating points close to stall, are presented and validated with experiment observations. The numerical results in the rotor relative reference frame are first converted to the casing absolute reference frame before compared with the measurements in experiments. It is found that the main frequency components of simulation at absolute reference frame match well with those measured in the experiments. The mechanism of the unsteadiness and its significance to stability enhancement design are then discussed based on the details of the flow field obtained through numerical simulations.


2015 ◽  
Vol 779 ◽  
pp. 125-132
Author(s):  
Ying Na Liang

Computational fluid dynamics (CFD) method was applied to study the flow field in cylindrical stirred tank mixing non-Newtonian fluid with double layer combined impeller of upper-straight-blade and lower-inclined-blade. The laminar model and the multiple reference frame (MRF) were employed to simulate the three-dimensional flow field in stirred tank with double layer combined impeller rotating at a constant speed of 200 r/min mixing the mixture of glycerin and water centrally、eccentrically and relative eccentrically, and three different flow structures in stirred tank were obtained. Analyzing the velocity vectors, the velocity contours and the axial、radial and tangent velocity distribution curves, the rule of velocity field with the blade combined form and the stirring structure was discussed. The research provided the valuable reference for the design and practical application of the laminar stirred tank.


2016 ◽  
Vol 798 ◽  
pp. 371-397 ◽  
Author(s):  
José P. Gallardo ◽  
Helge I. Andersson ◽  
Bjørnar Pettersen

We investigate the early development of instabilities in the oscillatory viscous flow past cylinders with elliptic cross-sections using three-dimensional direct numerical simulations. This is a classical hydrodynamic problem for circular cylinders, but other configurations have received only marginal attention. Computed results for some different aspect ratios ${\it\Lambda}$ from 1 : 1 to 1 : 3, all with the major axis of the ellipse aligned in the main flow direction, show good qualitative agreement with Hall’s stability theory (J. Fluid Mech., vol. 146, 1984, pp. 347–367), which predicts a cusp-shaped curve for the onset of the primary instability. The three-dimensional flow structures for aspect ratios larger than 2 : 3 resemble those of a circular cylinder, whereas the elliptical cross-section with the lowest aspect ratio of 1 : 3 exhibits oblate rather than tubular three-dimensional flow structures as well as a pair of counter-rotating spanwise vortices which emerges near the tips of the ellipse. Contrary to a circular cylinder, instabilities for an elliptic cylinder with sufficiently high eccentricity emerge from four rather than two different locations in accordance with the Hall theory.


Author(s):  
Jos Derksen

Homogenization of initially segregated and stably stratified systems consisting of two miscible liquids with different density and the same kinematic viscosity in an agitated tank was studied computationally. Reynolds numbers were in the range of 3,000 to 12,000 so that it was possible to solve the flow equations without explicitly modeling turbulence. The Richardson number that characterizes buoyancy was varied between 0 and 1. The stratification clearly lengthens the homogenization process. Two flow regimes could be identified. At low Richardson numbers large, three-dimensional flow structures dominate mixing, as is the case in non-buoyant systems. At high Richardson numbers the interface between the two liquids largely stays intact. It rises due to turbulent erosion, gradually drawing down and mixing up the lighter liquid.


Author(s):  
J. D. Denton ◽  
L Xu

Many of the phenomena involved in turbomachinery flow can be understood and predicted on a two-dimensional (2D) or quasi-three-dimensional (Q3D) basis, but some aspects of the flow must be considered as fully three-dimensional (3D) and cannot be understood or predicted by the Q3D approach. Probably the best known of these fully 3D effects is secondary flow, which can only be predicted by a fully 3D calculation which includes the vorticity at inlet to the blade row. It has long been recognized that blade sweep and lean also produce fully 3D effects and approximate methods of calculating these have been developed. However, the advent of fully 3D flow field calculation methods has made predictions of these complex effects much more readily available and accurate so that they are now being exploited in design. This paper will attempt to describe and discuss fully 3D flow effects with particular reference to their use to improve turbomachine performance. Although the discussion is restricted to axial flow machines, many of the phenomena discussed are equally applicable to mixed and radial flow turbines and compressors.


Sign in / Sign up

Export Citation Format

Share Document