scholarly journals Modeling impacts of industrial park activity on air quality of surrounding area for identifying isolation distance: A case of Tan Tao Industrial Park, Ho Chi Minh City, Viet Nam

2022 ◽  
Vol 964 (1) ◽  
pp. 012023
Author(s):  
Bang Quoc Ho ◽  
Hoang Ngoc Khue Vu ◽  
Thoai Tam Nguyen ◽  
Thi-Thu Giang Nguyen ◽  
Thi-Quynh Nhu Diep ◽  
...  

Abstract Industrial factories have been addressed as the main contributor to the amount of air pollution in many urban areas around the world. The emissions of air pollutants from factories, combined with exhausted gases from automobile and domestic cooking activities, have placed enormous adverse effects on human health. Recently, air quality models, which usually figure out for industrial emission with representative indicators such as CO, NO2, SO2, and TSP, have triggered an application to identify a suitable isolation distance that could lessen affection on public health. Concerning to develop an air emission inventory for Tan Tao Industrial Park (IP) for three sources of points, line and area sources by using top-down and bottom-up approaches, this study aim to: (i) apply a system model of TAPM – AERMOD model to study the air pollution dispersion from the IP to the surrounding area, and (ii) identify a hygiene isolation distance for sensitive objects around industrial park, especially zones of community, based on their separating demand from contamination. Results show that the point sources are the dominant air emission sources of Tan Tao IP. Total emissions of Tan Tao IP in 2019 estimated at 413.15 tons of TSP/year, 280.9 tons of NO2/year, 621.99 tons of SO2/year, and 2720.21 tons of CO/year. Modeling results show that 1-hour maximum concentration of TSP, NO2, SO2, and CO in the simulation area is 581µg/m3, 4.069µg/m3, 5.478µg/m3, 40.695µg/m3, respectively, exceeding the standards. Especially, the pollution levels of NO2 were 20 times higher than the limit value, similar trends for SO2 (15 times higher). The hygiene isolation distance was suggested a widely ranged from 2910 meters in the North-West and in the rest directions of Ho Chi Minh City. Some sensitive objects such as residential areas, hospitals and kindergartens recently are inside the affected zone should be reckoned to have suitable solutions that keep their health safe. The method for calculation of hygiene isolation distances from industrial activities has a significant guiding not only for environmental safety action but also for public health protection.

2019 ◽  
Vol 29 (Supplement_4) ◽  
Author(s):  
J Gajic ◽  
D Dimovski ◽  
B Vukajlovic ◽  
M Jevtic

Abstract Issue/problem Increasing attention is being paid to air pollution as one of the greatest threats to public and urban health. The WHO’s Urban Health Initiative points out the importance of collecting data and mapping the present state of air quality in urban areas. For citizens, such engagement is enabled by the appearance of personal air quality measurement devices that use crowd-sourcing to make measurement results publicly accessible in real time. Description of the problem As a way of contributing to air pollution monitoring in their town, three PhD Public health students conducted over 40 measurements between the start of June and end of August 2018 on various locations in the city of Novi Sad, Serbia. Measurements were performed using AirBeam personal air quality monitoring devices and their results presented as μg/m3 of Particulate Matter 2.5 (PM2.5) and automatically uploaded to the internet using the Air-casting app. Results Measurements conducted in public transportation vehicles returned the rather high average value of 40 μg/m3, where coffee shops and restaurants scored an even higher value of 48,67 μg/m3. The lowest average air pollution levels were registered near the Danube river bank (5.67) and in the parks (6), while the sites near crossroads or in the street showed average air pollution of 8.33 μg/m3. Residential areas where smoking is present during the day reported 2.5 times higher PM2.5 values than those without smokers (33.8 and 12.78 μg/m3). Lessons Bearing in mind that the air quality is considered as a serious health risk in urban areas, results of this pilot investigation suggest potential health risk for citizens living in urban areas. The negative effects of combustion and smoking on air quality are strongly highlighted, as well as the positive impact of green areas and parks near residential areas. Key messages Air pollution exposure as a serious health risk in urban areas. Crowdsourcing as a way of air quality monitoring has great potential for contributing to public health.


Topophilia ◽  
2020 ◽  
pp. 53-62
Author(s):  
Sonak Patel

This paper assesses the threat that ambient air pollution poses to urban public health and the potential role of urban vegetation to mitigate those threats. Air pollution is a major global risk to health, especially in urban areas. In this paper, four major air pollutants were assessed: particulate matter, tropospheric ozone, nitrogen dioxide, and sulfur dioxide. These pollutants were found to have several adverse effects, including increasing mortality and respiratory morbidity. These pollutants come from a variety of sources, but a major contributor in urban areas is the burning of fossil fuels in automobiles. The adverse health effects of pollution are expected to grow as climate change worsens air quality. Research and case studies find that urban vegetation can filter air and remove pollutants through deposition and stomatal uptake. The effectiveness of air pollution removal is dependent upon specific variables, including leaf characteristics, type of vegetation, and seasons. Urban vegetation may worsen air quality in some cases due to slowing ventilation and producing biological volatile organic compounds. While urban vegetation has potential to mitigate ambient air pollution, conducting site specific research is needed when implementing greenspace policies.


2020 ◽  
Vol 117 (41) ◽  
pp. 25370-25377
Author(s):  
Haikun Wang ◽  
Xiaojing He ◽  
Xinyu Liang ◽  
Ernani F. Choma ◽  
Yifan Liu ◽  
...  

China started to implement comprehensive measures to mitigate traffic pollution at the end of 1990s, but the comprehensive effects, especially on ambient air quality and public health, have not yet been systematically evaluated. In this study, we analyze the effects of vehicle emission control measures on ambient air pollution and associated deaths attributable to long-term exposures of fine particulate matter (PM2.5) and O3based on an integrated research framework that combines scenario analysis, air quality modeling, and population health risk assessment. We find that the total impact of these control measures was substantial. Vehicular emissions during 1998–2015 would have been 2–3 times as large as they actually were, had those measures not been implemented. The national population-weighted annual average concentrations of PM2.5and O3in 2015 would have been higher by 11.7 μg/m3and 8.3 parts per billion, respectively, and the number of deaths attributable to 2015 air pollution would have been higher by 510 thousand (95% confidence interval: 360 thousand to 730 thousand) without these controls. Our analysis shows a concentration of mortality impacts in densely populated urban areas, motivating local policymakers to design stringent vehicle emission control policies. The results imply that vehicle emission control will require policy designs that are more multifaceted than traditional controls, primarily represented by the strict emission standards, with careful consideration of the challenges in coordinated mitigation of both PM2.5and O3in different regions, to sustain improvement in air quality and public health given continuing swift growth in China’s vehicle population.


2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 236
Author(s):  
Ha Na You ◽  
Myeong Ja Kwak ◽  
Sun Mi Je ◽  
Jong Kyu Lee ◽  
Yea Ji Lim ◽  
...  

Environmental pollution is an important issue in metropolitan areas, and roadside trees are directly affected by various sources of pollution to which they exhibit numerous responses. The aim of the present study was to identify morpho-physio-biochemical attributes of maidenhair tree (Ginkgo biloba L.) and American sycamore (Platanus occidentalis L.) growing under two different air quality conditions (roadside with high air pollution, RH and roadside with low air pollution, RL) and to assess the possibility of using their physiological and biochemical parameters as biomonitoring tools in urban areas. The results showed that the photosynthetic rate, photosynthetic nitrogen-use efficiencies, and photochromic contents were generally low in RH in both G. biloba and P. occidentalis. However, water-use efficiency and leaf temperature showed high values in RH trees. Among biochemical parameters, in G. biloba, the lipid peroxide content was higher in RH than in RL trees, but in P. occidentalis, this content was lower in RH than in RL trees. In both species, physiological activities were low in trees planted in areas with high levels of air pollution, whereas their biochemical and morphological variables showed different responses to air pollution. Thus, we concluded that it is possible to determine species-specific physiological variables affected by regional differences of air pollution in urban areas, and these findings may be helpful for monitoring air quality and environmental health using trees.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


2004 ◽  
Vol 63 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Frank J. Kelly

Air is one of our most important natural resources; however, it is also in the front line for receiving environmental pollution. Air quality decreased markedly following the industrial revolution, but it was not until the great London Smog in 1952 that air quality made it onto the political agenda. The introduction of the Clean Air Act in 1956 led to dramatic decreases in black smoke and SO2 concentrations over the next two decades, as domestic and industrial coal-burning activities ceased. However, as these improvements progressed, a new threat to public health was being released into the air in ever-increasing quantities. Rapid motorisation of society from the 1960s onwards has led to the increased release of atmospheric pollutants such as tiny particles (particulate matter of &10 μm in aerodynamic diameter) and oxides of N, and the generation of the secondary pollutant O3. These primary and secondary traffic-related pollutants have all proved to be major risks factors to public health. Recently, oxidative stress has been identified as a unifying feature underlying the toxic actions of these pollutants. Fortunately, the surface of the lung is covered with a thin layer of fluid containing a range of antioxidants that appear to provide the first line of defence against oxidant pollutants. As diet is the only source of antioxidant micronutrients, a plausible link now exists between the sensitivity to air pollution and the quality of the food eaten. However, many questions remain unanswered in relation to inter-individual sensitivity to ambient air pollution, and extent to which this sensitivity is modified by airway antioxidant defences.


Modern China ◽  
2020 ◽  
pp. 009770042096728
Author(s):  
Thomas Johnson ◽  
Kathinka Fürst

This article examines how artists have engaged with the issue of air pollution in Beijing, where poor air quality has become a serious public health matter. Artists have utilized various mediums including performance art, photography, and painting to represent smog. Through generating media and online attention this work has contributed to a relatively vibrant “green public sphere” (Yang and Calhoun, 2007) of air pollution discourse. In contrast to much resistance in China that relies upon making specific claims to government officials, artistic expression bypasses the authorities and appeals instead to public opinion. Artists utilize ambiguity to portray air pollution in novel ways that subtly question the structures that produce and sustain it. In this way, artists can challenge popular perceptions of smog and raise public awareness, thus intensifying support for policies that tackle smog. Yet art can also embody deep frustration at the powerlessness that artists, and the public more widely, experience when confronted by severe air pollution. Art therefore serves both as a form of activism and as an expression of curtailed agency in a politically restrictive environment.


Sign in / Sign up

Export Citation Format

Share Document