scholarly journals Estimation of wind speed and energy potential by atmospheric model for day-ahead market and wind power plants in Turkey

Author(s):  
M A Devrim ◽  
A Sakalli
2014 ◽  
Vol 651-653 ◽  
pp. 1117-1122
Author(s):  
Zheng Ning Fu ◽  
Hong Wen Xie

Wind speed forecasting plays a significant role to the operation of wind power plants and power systems. An accurate forecasting on wind power can effectively relieve or avoid the negative impact of wind power plants on power systems and enhance the competition of wind power plants in electric power market. Based on a fuzzy neural network (FNN), a method of wind speed forecasting is presented in this paper. By mining historical data as the learning stylebook, the fuzzy neural network (FNN) forecasts the wind speed. The simulation results show that this method can improve the accuracy of wind speed forecasting effectively.


2012 ◽  
pp. 29-33
Author(s):  
S. Asghar Gholamian ◽  
S. Bagher Soltani ◽  
R. Ilka

First step for achieving wind energy is to locate points with appropriate wind power density in a country. Wind data which are recorded in a synoptic weather station, are the best way to study the wind potential of an area. In this paper wind speed period of Baladeh synoptic weather station is studied, since it has the maximum average of wind speed among 15 stations of the MAZANDARAN Province. Weibull factors k and c are calculated for 40 months from September 2006 to December 2009 and wind power density is determined based on these data. The total average of factors k and c for a height for 50 m are 1.442 m/s and 5.1256 respectively. By using the average of factors, wind power density in 50 m height will be 147.40 watt/m2 which is categorized as weak potential in wind class. However by monthly investigation it is shown that with a 50 m wind, this station can be put in medium class in hot months of the year.


Author(s):  
Olga Krivenko

The relevance of the study is associated with the need to determine scientifically based principles for the design of wind-powered high-rise buildings. The article analyzes the main climatic parameters affecting the design of wind-powered high-rise buildings. While current research focuses mainly on the technical performance and savings of wind power plants (WPPs), modeling wind energy potential based on the analysis of climatic parameters allows you to optimize design solutions taking into account the influence of the environment. For various stages of the design of the integration of wind turbines into a high-rise building, it is important to take into account the dimensions of climate systems (macro, meso and micro levels), based on the laws operating within certain territorial boundaries. The article discusses the macroclimatic indicators that determine the total energy resource of wind in the region. The influence of the parameters of the mesoclimate on the wind potential has been determined, in accordance with the characteristics of the natural and anthropogenic environment (relief, the presence of forests, proximity to water bodies, urban development). The parameters that clarify the energy potential of the wind at the microclimatic level, taking into account the location of the wind turbine in the building, have been investigated. As a result of the analysis, a diagram of the structure of preliminary modeling of the energy wind potential at various climatic levels in the design of wind turbines in high-rise buildings has been determined. 


2002 ◽  
Vol 124 (4) ◽  
pp. 427-431 ◽  
Author(s):  
Yih-huei Wan ◽  
Demy Bucaneg,

To evaluate short-term wind power fluctuations and their impact on electric power systems, the National Renewable Energy Laboratory, in cooperation with Enron Wind, has started a project to record output power from several large commercial wind power plants at the 1-Hertz rate. This paper presents statistical properties of the data collected so far and discusses the results of data analysis. From the available data, we can already conclude that despite the stochastic nature of wind power fluctuations, the magnitudes and rates of wind power changes caused by wind speed variations are seldom extreme, nor are they totally random. Their values are bounded in narrow ranges. Power output data also show significant spatial variations within a large wind power plant. The data also offer encouraging evidence that accurate wind power forecasting is feasible. To the utility system, large wind power plants are not really random burdens. The narrow range of power level step changes provides a lot of information with which system operators can make short-term predictions of wind power. Large swings of wind power do occur, but those infrequent large changes (caused by wind speed changes) are always related to well-defined weather events, most of which can be accurately predicted in advance.


Author(s):  
Amanda Ribeiro de Andrade ◽  
Victor Felipe Moura Bezerra Melo ◽  
Daisy Beserra Lucena ◽  
Raphael Abrahão

2020 ◽  
Vol 12 (15) ◽  
pp. 6017
Author(s):  
Yasemin Ayaz Atalan ◽  
Mete Tayanç ◽  
Kamil Erkan ◽  
Abdulkadir Atalan

This study aims to develop an optimization model for obtaining the maximum benefit from wind power plants (WPPs) to help with reducing external dependence in terms of energy. In this sense, design of experiment and optimization methods are comprehensively combined in the wind energy field for the first time. Existing data from installed WPPs operating in Turkey for the years of 2017 and 2018 are analyzed. Both the individual and interactive effects of controllable factors, namely turbine power (MW), hub height (m) and rotor diameter (m), and uncontrollable factor as wind speed (m/s) on WPPs are investigated with the help of Box-Behnken design. Nonlinear optimization models are utilized to estimate optimum values for each decision variable in order to maximize the amount of energy to be produced for the future. Based on the developed nonlinear optimization models, the optimum results with high desirability value (0.9587) for the inputs of turbine power, hub height, rotor diameter and wind speed are calculated as 3.0670 MW, 108.8424 m, 106.7597 m, and 6.1684 m/s, respectively. The maximum energy output with these input values is computed as 9.952 million kWh per unit turbine, annually. The results of this study can be used as a guideline in the design of new WPPs to produce the maximum amount of energy contributing to supply escalating energy needs by more sustainable and clean ways for the future.


Author(s):  
Jayachandra N. Sakamuri ◽  
Kaushik Das ◽  
Mufit Altin ◽  
Nicolaos A. Cutululis ◽  
Anca D. Hansen ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Randy Yonanda Pratama ◽  
Muldi Yuhendri

Wind turbines function as producers of mechanical power to drive generators in wind power plants. One factor that needs to be considered in the operation of wind turbines is the maximum capacity of the generator. Wind turbines must operate below the generator rating so as not to cause damage to the generator. Therefore, the operation of the wind turbine needs to be monitored and controlled to keep it operating within the generator rating limits. In this paper a horizontal axis wind turbine monitoring sistem is proposed using an Android smartphone. Wind turbine monitoring includes wind speed and turbine rotation speed parameters. This parameter data is obtained from sensors that are processed with Arduino Mega 2560. Data from Arduino is sent via the Bluetooth HC-04 module to be displayed on an Android smartphone. The experimental results show that the proposed wind turbine monitoring system has worked well. This can be seen from the wind speed and turbine rotation data that is displayed on android is exactly the same as the data on the measuring instrument


Sign in / Sign up

Export Citation Format

Share Document