scholarly journals Simulation model for predicting reciprocating internal combustion engine wear

2021 ◽  
Vol 1047 (1) ◽  
pp. 012010
Author(s):  
A A Malozemov ◽  
D V Kozminykh ◽  
G A Malozemov ◽  
A V Shavlov
Author(s):  
Maxim Igorevich Tarasov ◽  
Georgy Alexandrovich Gauk ◽  
Liudmila Anatolievna Semeniuk

The results of modeling the impact of oil burning on the condition of the ship forced trunk piston diesel engine when using lubricants with different operating properties. The dependence of wear rate on oil fume, the quality of used lubricants and marine diesel forcing is obtained by modeling wear using the theory of planning experiments. The area of minimal wear has been determined. There has been detected the most efficient waste oil providing favorable conditions for resource-saving operation of the internal combustion engine. It is inferred that reduction of engine oil fume changes the main parameters of its aging. At the same time, the intensity of oil aging in main directions and of engine wear reduce from 0.75 to 2.25 g/(kW∙h), whereas the fume increases. Its further increase is accompanied by an increase in the rate of oil aging and engine wear. The detected "fracture" depending on И( g y) after passing the border g yopt = 2.25-2.5 g/(kW∙h) is stipulated by different ratio of oil exchange in the lubrication system and the ingress of gases into the crankcase. There has been determined the degree of oil burning, at which sludging and lacquer formation of the internal combustion engine is least intense. The smallest carbon deposits on pistons and in the crankcase of the engine can be observed when the diesel engine is operating in the zone of optimal carbonation. Experimentally, the dependence of tribotechnical properties, in particular, wear of insoluble products of oil aging has been detected at different degrees of oil burning. It is revealed that these characteristics also depend on the quality of the used fuels and lubricants and the conditions of formation and turnover of the oil film on the mirror of the cylinder, the thermal effect on it of the engine workflow. The result of simulation is the prediction of resource-saving operation of marine trunk diesel engines by maintaining oil fume at the optimal level.


2021 ◽  
Vol 5 (2) ◽  
pp. 29-33
Author(s):  
Volodymyr Kononov ◽  
Olena Kononova ◽  
Yulia Musairova

The purpose of the article is to substantiate the possibility of using electromechanical analogies in the construction and calculation of parameters of the simulation model of the process of torsional oscillations of the internal combustion engine shaft, which will allow to move from mechanical models of shafts to their electrical counterparts. Results of the research. The article clarifies the relationship between phenomena occurring in mechanical and electrical systems, mechanical and electrical analogues are established, namely force is considered as electromotive force or voltage, velocity as current, moment of inertia as inductance, spring flexibility as capacitance, coefficient friction as electrical resistance, and the kinematic scheme of the shaft line is presented in the form of a diagram of a reactive bipolar, the parameters of which are determined during analytical calculations of the kinematic scheme of the elastic system. The concept of dynamic stiffness is introduced, which is similar to the concept of reactive resistance of a bipolar. The initial data for the calculation of a linear system in which it is assumed that the pliability of the shock absorber is zero. Conclusions. According to the results of the analogies, the parameters of the simulation model were obtained. The calculation of the elastic system using the method of electromechanical analogies allowed to build a simulation model of the shaft line of an internal combustion engine.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Md Nazri Othman ◽  
Nur Maisarah Mohd Sobran ◽  
Kasrul Abdul Karim ◽  
Ismadi Bugis ◽  
Auzani Jidin

The interest in electric vehicles (EVs) is significantly increased due to the awareness of internal combustion engine (ICE) effects towards the environmental and sustainability issue. In developing EVs projects, computer modelling of the vehicle dynamic and simulation can be utilized to estimate the battery power requirement and predict the optimum cruising strategies which in return will shorten the design development process and reduce the cost of prototyping. This paper presents the effectiveness of the vehicle dynamic simulation model  of a converted internal combustion engine vehicle PROTON SAGA sedan into a fully EV called EVerGREEN. The simulation model is set to analyse the effect of the vehicle dynamic parameters such as vehicle resistance and the motor characteristics in predicting the optimum driving profile. The development of the electric vehicle EVerGREEN is shortly presented together with the vehicle dynamic model. The driving performance is measured based on a real road test at F1 Sepang International Circuit and the results are validated by comparing between the simulation model and the actual drive test. Simulation and experimental results are shown to verify the effectiveness of the proposed model which shows a good agreement between them. Further works in enhancing the model effectiveness could be implemented by incorporating the battery characteristics and hence would provide better energy management for the vehicle.


Author(s):  
Adolfo Senatore ◽  
Dario Buono ◽  
Emma Frosina ◽  
Luca Santato

This paper presents the simulation model of an oil lubrication gerotor pump for the internal combustion engine. The model was constructed by using a mono-dimensional commercial code taking into account all the phenomena that occur during the revolution of the pump shaft. First of all, several geometric considerations and theoretical observation are presented. An experimental campaign was also performed to validate the simulation model. In these experimental tests particular attention was regarded to the behavior of the pressure oscillations during the pump shaft revolutions. The final aim of this activity is to obtain an instrument that allows in-depth analysis of pump and lubrication circuit functioning and that can be coupled with other models (e.g. VVA, VVT, etc.) in order to take into account different problems of the hydraulic components of engines.


2021 ◽  
pp. 17-20
Author(s):  

The processes of wear of the tribocouplings of the cylinderpiston group (CPG) of the internal combustion engine are investigated. Design solutions are developed that increase the tightness and wear resistance of the CPG parts. Keywords: cylinder-piston group, internal combustion engine, wear, tightness, wear resistance, running-in. [email protected]


2011 ◽  
Vol 308-310 ◽  
pp. 953-961 ◽  
Author(s):  
Qing Yin Niu ◽  
Chao Fan ◽  
Xian Chen Wang ◽  
Yi Wu Zhao ◽  
Yu Cai Dong

The computer simulation technology of the work process of internal-combustion engine is the important measure to study the internal-combustion engine, but generally, because of the uncertainty of input parameters, the precision of the simulation model of the engine work process, which largely limits the application of the simulation model, so the parameters of the simulation model needs to be calibrated. Taking the work process of the certain one type turbocharging diesel engine as the example, and combining the genetic algorithm with the ant colony algorithm, the parameter combination which can satisfy the requirements of precision, is selected in this article to effectively reduce the simulation experiment times of parameter calibration, and realize the automatic calibration of the simulation model parameters. By comparing and analyzing the practical result of the experiment and the result of the simulation computation, the effectiveness of the algorithm has been validated in the article.


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Sign in / Sign up

Export Citation Format

Share Document