Analysis and Simulation of an Oil Lubrication Pump for the Internal Combustion Engine

Author(s):  
Adolfo Senatore ◽  
Dario Buono ◽  
Emma Frosina ◽  
Luca Santato

This paper presents the simulation model of an oil lubrication gerotor pump for the internal combustion engine. The model was constructed by using a mono-dimensional commercial code taking into account all the phenomena that occur during the revolution of the pump shaft. First of all, several geometric considerations and theoretical observation are presented. An experimental campaign was also performed to validate the simulation model. In these experimental tests particular attention was regarded to the behavior of the pressure oscillations during the pump shaft revolutions. The final aim of this activity is to obtain an instrument that allows in-depth analysis of pump and lubrication circuit functioning and that can be coupled with other models (e.g. VVA, VVT, etc.) in order to take into account different problems of the hydraulic components of engines.

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Emma Frosina ◽  
Adolfo Senatore ◽  
Dario Buono ◽  
Luca Santato

This paper presents a simulation model of an oil-lubrication gerotor pump for internal combustion engines. The model was constructed by using a monodimensional commercial code that accounted for all phenomena that occur during the revolution of the pump shaft. Several geometric considerations and theoretical observations are presented. An experiment was also performed to validate the simulation model. In these experimental tests, particular attention was paid to the behavior of the pressure oscillations during the pump shaft revolutions. The final aim of this activity is to obtain an instrument that allows the in-depth analysis of the functioning of the pump and lubrication circuit. Additionally, this instrument can be coupled with other models (e.g., variable valve actuation (VVA) and variable valve timing (VVT)) to account for different problems experienced by the hydraulic components of engines.


2021 ◽  
Vol 5 (2) ◽  
pp. 29-33
Author(s):  
Volodymyr Kononov ◽  
Olena Kononova ◽  
Yulia Musairova

The purpose of the article is to substantiate the possibility of using electromechanical analogies in the construction and calculation of parameters of the simulation model of the process of torsional oscillations of the internal combustion engine shaft, which will allow to move from mechanical models of shafts to their electrical counterparts. Results of the research. The article clarifies the relationship between phenomena occurring in mechanical and electrical systems, mechanical and electrical analogues are established, namely force is considered as electromotive force or voltage, velocity as current, moment of inertia as inductance, spring flexibility as capacitance, coefficient friction as electrical resistance, and the kinematic scheme of the shaft line is presented in the form of a diagram of a reactive bipolar, the parameters of which are determined during analytical calculations of the kinematic scheme of the elastic system. The concept of dynamic stiffness is introduced, which is similar to the concept of reactive resistance of a bipolar. The initial data for the calculation of a linear system in which it is assumed that the pliability of the shock absorber is zero. Conclusions. According to the results of the analogies, the parameters of the simulation model were obtained. The calculation of the elastic system using the method of electromechanical analogies allowed to build a simulation model of the shaft line of an internal combustion engine.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Md Nazri Othman ◽  
Nur Maisarah Mohd Sobran ◽  
Kasrul Abdul Karim ◽  
Ismadi Bugis ◽  
Auzani Jidin

The interest in electric vehicles (EVs) is significantly increased due to the awareness of internal combustion engine (ICE) effects towards the environmental and sustainability issue. In developing EVs projects, computer modelling of the vehicle dynamic and simulation can be utilized to estimate the battery power requirement and predict the optimum cruising strategies which in return will shorten the design development process and reduce the cost of prototyping. This paper presents the effectiveness of the vehicle dynamic simulation model  of a converted internal combustion engine vehicle PROTON SAGA sedan into a fully EV called EVerGREEN. The simulation model is set to analyse the effect of the vehicle dynamic parameters such as vehicle resistance and the motor characteristics in predicting the optimum driving profile. The development of the electric vehicle EVerGREEN is shortly presented together with the vehicle dynamic model. The driving performance is measured based on a real road test at F1 Sepang International Circuit and the results are validated by comparing between the simulation model and the actual drive test. Simulation and experimental results are shown to verify the effectiveness of the proposed model which shows a good agreement between them. Further works in enhancing the model effectiveness could be implemented by incorporating the battery characteristics and hence would provide better energy management for the vehicle.


2021 ◽  
Vol 313 ◽  
pp. 13001
Author(s):  
Francesco Catapano ◽  
Carmela Perozziello ◽  
Bianca Maria Vaglieco

This work aims to study a Stirling engine (SE) used to recover the heat content of the exhaust gas from an internal combustion engine. The attention has been focused on the heat transfer between the exhaust gas and the working gas inside the heater. Experimental tests have been performed on a two-cylinder gamma-type Stirling engine coupled to a compression ignition engine using a thermally insulated pipe and a cap. A mechanical power of 0.275 kW at 900 rpm SE rotational speed was obtained with a SE efficiency of 11.7%. To investigate how the exhaust gas-heater interaction affects SE efficiency, a 3D model was developed by the authors. The cap-heater system was studied as a shell-and-tubes heat exchanger. Experimental values of temperature and velocity have been set as boundary conditions for the cap, while for the heater, pressure and velocity have been predicted using a 1D adiabatic model adjusted for SE geometry. The results showed that temperature distribution is not uniform in both cylinders, involving that the working pistons do not work in the same way. Therefore, to improve SE efficiency, a proper configuration of SE-CI engine coupling should be designed.


2021 ◽  
Author(s):  
Grzegorz Przybyła ◽  
Łukasz Ziółkowski ◽  
Mateusz Buczak ◽  
Zbigniew Żmudka

This paper presents the experimental results of a Combined Heat and Power (CHP) prototype based on a SI V-twin internal combustion engine driving a synchronous generator. The paper presents the criteria that were used to select the combustion engine and the electrical generator for the prototype. The internal combustion engine has been adapted to be fuelled by natural gas or LPG, with the possibility of controlling the load in two ways, i.e. by changing the throttle position (quantitatively) and/or the value of the excess air ratio by changing the fuel dose at a constant throttle position (qualitatively). The applied method of control allows to improve the efficiency of the engine especially in the range of partial loads. The experimental tests were carried out at a constant speed of 1500 rpm. During the tests, the fuel consumption of the internal combustion engine, the composition of the exhaust gas at the outlet of the exhaust system, the electrical parameters of the synchronous generator and the temperature at selected locations of the CHP system instance were measured. According to the obtained results, there was a slight increase in the efficiency of electricity generation with the application of the developed method of control of the combustion engine. The maximum power generation efficiency for Natural Gas (NG) was higher compared to LPG by more than 2 percentage points.


Sign in / Sign up

Export Citation Format

Share Document