scholarly journals Docking study for assessment of wound healing potential of isosakuratenin isolated from Chromolaena odorata: An In-silico approach

2021 ◽  
Vol 1051 (1) ◽  
pp. 012078
Author(s):  
N A Mokhtar ◽  
F M Tap ◽  
S Z A Talib ◽  
N A Khairudin
2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2019 ◽  
Vol 15 (4) ◽  
pp. 318-333
Author(s):  
Dipak P. Mali ◽  
Neela M. Bhatia

Objective:To screen the phytochemicals for phosphodiesterase 5A (PDE5A) inhibitory potential and identify lead scaffolds of antihypertensive phytochemicals using in silico docking studies.Methods:In this perspective, reported 269 antihypertensive phytochemicals were selected. Sildenafil, a PDE5A inhibitor was used as the standard. In silico docking study was carried out to screen and identify the inhibiting potential of the selected phytochemicals against PDE5A enzyme using vLife MDS 4.4 software.Results:Based on docking score, π-stacking, H-bond and ionic interactions, 237 out of 269 molecules were selected which have shown one or more interactions. Protein residue Gln817A was involved in H-boding whereas Val782A, Phe820A and Leu804A were involved in π-stacking interaction with ligand. The selected 237 phytochemicals were structurally diverse, therefore 82 out of 237 molecules with one or more tricycles were filtered out for further analysis. Amongst tricyclic molecules, 14 molecules containing nitrogen heteroatom were selected for lead scaffold identification which finally resulted in three different basic chemical backbones like pyridoindole, tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline as lead scaffolds.Conclusion:In silico docking studies revealed that nitrogen-containing tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic lead scaffolds have emerged as novel PDE5A inhibitors for antihypertensive activity. The identified lead scaffolds may provide antihypertensive lead molecules after its optimization.


2020 ◽  
Vol 20 (4) ◽  
pp. 464-475 ◽  
Author(s):  
Yang Lu ◽  
Wencui Yin ◽  
Mohammad S. Alam ◽  
Adnan A. Kadi ◽  
Yurngdong Jahng ◽  
...  

Background: Cancer is one of the leading causes of mortality globally. To cope with cancer, it is necessary to develop anticancer drugs. Bioactive natural products, i.e. diarylheptanoids, have gained significant attention of researchers owing to their intriguing structures and potent biological activities. In this article, considering the development of anticancer drugs with enhanced selectivity towards cancerous cells, a series of Cyclic Diarylheptanoids (CDHs) are designed, synthesized and evaluated their biological activity. Objective: To establish an easy route for the synthesis of diarylheptanoids, and evaluate their antiproliferative, and topoisomerase-I & -IIα inhibitory activities, for developing potential anticancer drugs among CDHs. Methods: Diarylheptanoids were synthesized from reported linear diarylheptanoids using the classical Ullmann reaction. Antibacterial activity was evaluated by the filter paper disc diffusion method. Cell viability was assessed by measuring mitochondrial dehydrogenase activity with a Cell Counting Kit (CCK-8). Topoisomerases I and II (topo-I and -IIα) inhibitory activity was measured by the assessment of relaxation of supercoiled pBR322 plasmid DNA. IFD protocol of Schrodinger Maestro v11.1 was used to characterize the binding pattern of studied compounds with the ATPase domain of the human topo-IIα. Results: The synthesized CDHs were evaluated for their biological activities (antibacterial, antiproliferative, and topoisomerase-I & -IIα inhibitory activities, respectively). Leading to obtain a series of anticancer agents with the least inhibitory activities against different microbes, improving their selectivity for cancer cells. In brief, most of the synthesized CDHs had excellent antiproliferative activity against T47D (human breast cancer cell line). Pterocarine possessed the strongest activity (2i; IC50 = 0.63µM) against T47D. The cyclic diarylheptanoid 2b induced 30% inhibition of topoisomerase-IIα activity at 100μM compared with the reference of etoposide, which induced 72% inhibition. Among the tested compounds, galeon (2h) displayed very low activity against four bacterial strains. Compounds 2b, 2h, and 2i formed hydrogen bonds with Thr215, Asn91, Asn120, Ala167, Lys168 and Ile141 residues, which are important for binding of ligand compound to the ATPase binding site of topoisomerase IIα by acting as ATP competitive molecule validated by docking study. In silico Absorption, Distribution, Metabolism and Excretion (ADME) analysis revealed the predicted ADME parameters of the studied compounds which showed recommended values. Conclusion: A series of CDHs were synthesized and evaluated for their antibacterial, antiproliferative, and topo-I & -IIα inhibitory activities. SARs study, molecular docking study and in silico ADME analysis were conducted. Five compounds exhibited excellent and selective antiproliferative activity against the human breast cancer cell line (T47D). Among them, a compound 2h showed topo-IIα activity by 30% at 100µM, which represented a moderate intensity of inhibition compared with etoposide. Three of them formed hydrogen bonds with Thr215, Asn91, Asn120, and Ala167 residues, which are considered as crucial residues for binding to the ATPase domain of topoisomerase IIα. According to in silico drug-likeness property analysis, three compounds are expected to show superiority over etoposide in case of absorption, distribution, metabolism and excretion.


Author(s):  
Thang Phan ◽  
Sui-Yung Chan ◽  
Margaret Hughes ◽  
Seng-Teik Lee ◽  
George Cherry ◽  
...  

2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


2021 ◽  
Vol 12 (6) ◽  
pp. 7621-7632

Diabetes Mellitus is the most prevalent metabolic disorder that is increasing at an alarming rate worldwide. The unregulated glucose level leads to various types of health disorders, and one of the major diabetic complications is delayed wound healing. Due to the more side effects of synthetic drugs, there is a need to explore plants and their phytochemicals for medicinal purposes. It was found that Quercetin, a flavonoid, increases the rate of diabetic wound healing by enhancing the expression of SIRT1. This demands more insight towards Quercetin and its similar compounds, as it is hypothesized that similar compounds may have similar biological properties. Thus similarity searching was done to identify the most similar compounds of Quercetin, and then the molecular docking of the screened compounds was performed using AutoDock Vina. The unique ligands were docked into the active site of SIRT1 protein (PDB ID: 4ZZJ). The binding free energy of the interacting ligand with the protein was estimated. Six compounds were identified which possess the maximum structural similarity with Quercetin, and upon docking, it was found that gossypetin and herbacetin have similar binding modes and binding energy as that of Quercetin (-7.5 kcal/mol). Therefore, the hypothesis has been validated by in silico analysis. Our study identified two phytochemicals, Gossypetin, and Herbacetin which can prove beneficial for improving diabetic wound healing but needs to be validated further by in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document