scholarly journals Modified Fluorescent PEG-Based Carrier System for In-vitro Imaging

2021 ◽  
Vol 1091 (1) ◽  
pp. 012020
Author(s):  
Aswathi Thomas ◽  
Dr. Aravind Kumar Rengan
Keyword(s):  
Author(s):  
Chukwuebuka Umeyor ◽  
Uchechukwu Nnadozie ◽  
Anthony Attama

This study seeks to formulate and evaluate a solid lipid nanoparticle-based, solidified micellar carrier system for oral delivery of cefepime. Cefepime has enjoyed a lot of therapeutic usage in the treatment of susceptible bacterial infections; however, its use is limited due to its administration as an injection only with poor patient compliance. Since oral drug administration encourage high patient compliance with resultant effect in improved therapy, cefepime was formulated as solid lipid microparticles for oral delivery using the concept of solidified micellar carrier system. The carrier system was evaluated based on particle yield, particle size and morphology, encapsulation efficiency (EE %), and thermal analysis using differential scanning calorimeter (DSC). Preliminary microbiological studies were done using gram positive and negative bacteria. In vitro release study was performed using biorelevant media, while in vivo release study was performed in white albino rats. The yield of solid lipid microparticles (SLM) ranged from 84.2 – 98.0 %. The SLM were spherical with size ranges of 3.8 ± 1.2 to 42.0 ± 1.4 µm. The EE % calculated ranged from 83.6 – 94.8 %. Thermal analysis showed that SLM was less crystalline with high potential for drug entrapment. Microbial studies showed that cefepime retained its broad spectrum anti-bacterial activity. In vitro release showed sustained release of cefepime from SLM, and in vivo release study showed high concentration of cefepime released in the plasma of study rats. The study showed that smart engineering of solidified micellar carrier system could be used to improve oral delivery of cefepime.


2017 ◽  
Vol 5 (11) ◽  
pp. 2328-2336 ◽  
Author(s):  
Mathias Dimde ◽  
Falko Neumann ◽  
Felix Reisbeck ◽  
Svenja Ehrmann ◽  
Jose Luis Cuellar-Camacho ◽  
...  

An advanced cationic carrier system which combines high transfection efficiency with low cytotoxicity and a control over the release of the encapsulated genetic material by the reduction of the multivalent architecture upon pH triggered degradation was developed.


2004 ◽  
Vol 57 (2) ◽  
pp. 269-277 ◽  
Author(s):  
Richard Süverkrüp ◽  
Sabine Grunthal ◽  
Olena Krasichkova ◽  
Stephan Maier ◽  
Anja Weichselbaum ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 439 ◽  
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Waseem Sharaf Saeed ◽  
Abdel-Basit Al-Odayni ◽  
Fahad A. Alharthi ◽  
Abdelhabib Semlali ◽  
...  

The release dynamics of aspirin(ASP), used as a drug model, from the poly(ethylene-co-vinyl alcohol)/poly(δ-valerolactone) (PE-co-VAL/Pδ-VL) hydrogel blend was controlled by varying the blend’s degree of swelling through a gradual loading of Pδ-VL (hydrophobic polymer) in this copolymer matrix. To achieve this goal, a series of PE-co-VAL/Pδ-VL blends with different ratios was prepared through the solvent casting method, and the miscibility of this polymer blend was evaluated by using Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and scanning electronic microscopy methods. The tests of cell adhesion and growth on the PE-co-VAL/Pδ-VL specimens were performed using the 3-(4,5-demethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and the results obtained were the best performance in terms of cell viability, cell adhesion, and growth of the PE-co-VAL/Pδ-VL50 material. The dynamic mechanical properties of the prepared material were also examined by dynamic mechanical analysis; the results obtained showed a material having intermediary mechanical properties between those of the two components. On the basis of these characterizations, the blend showing the best performance, such as the PE-co-VAL/Pδ-VL50 system, was chosen as a carrier to study the in vitro control of the release dynamics of ASP from the ASP/PE-co-VAL/Pδ-VL drug-carrier system when administered orally, in which the influences of the ASP content and the degree of swelling of the PE-co-VAL/Pδ-VL blend were investigated. Based on the data obtained and the gastrointestinal transit time reported by Beltzer et al., it was possible to estimate the distribution of the in vitro cumulative ASP released in different digestive system organs regardless of the actions of any enzymes and microorganisms and select the best-performing drug-carrier system.


1984 ◽  
Vol 218 (3) ◽  
pp. 947-951 ◽  
Author(s):  
J Jänne ◽  
D R Morris

Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N′′-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.


2010 ◽  
Vol 19 (10) ◽  
pp. 1339-1348 ◽  
Author(s):  
Taco Waaijman ◽  
Melanie Breetveld ◽  
Magda Ulrich ◽  
Esther Middelkoop ◽  
Rik J. Scheper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document