scholarly journals Potential of Latent Heat Load Removal by Activated Carbons for Energy Savings of Air Conditioning Systems

2021 ◽  
Vol 1096 (1) ◽  
pp. 012001
Author(s):  
T Miyazaki ◽  
Chairunnisa ◽  
F. Miksik ◽  
K Thu ◽  
J Miyawaki ◽  
...  
2019 ◽  
Vol 111 ◽  
pp. 04042
Author(s):  
Nicolás Ablanque ◽  
Santiago Torras ◽  
Carles Oliet ◽  
Joaquim Rigola ◽  
Carlos-David Pérez-Segarra

The simulation of HVAC systems is a powerful tool to improve the energy efficiency in buildings. The modelling of such systems faces several obstacles due to both the physical phenomenology present and the numerical resolution difficulties. The present work is an attempt to develop a robust, fast, and accurate model for HVAC systems that can interact with the other relevant systems involved in buildings thermal management. The whole system model has been developed in the form of libraries under the Modelica language to exploit its advantageous characteristics: object-oriented programming, equationbased modelling, and handling of multi-physics. The global resolution is carried out dynamically so that not only steady-state predictions can be conducted but also control strategies can be studied over meaningful periods of time. This latter aspect is crucial for optimizing energy savings. The libraries include models for all the system individual components such as pumps, compressors or heat exchangers (operating with twophase flows and/or moist air) and also models assemblies to account for vapour compression units and liquid circuits. An illustrative example of an indirect air conditioning system is detailed in the present work in order to highlight the model potential.


2017 ◽  
Vol 11 (21) ◽  
pp. 103
Author(s):  
Ricardo A. Lugo-Villalba ◽  
Mario Álvarez Guerra ◽  
Bienvenido Sarria López

The development of ship propulsion in the areas of Economic Operation, Environmental Protection and Ship Efficiency (Triple E - Economy, Environment, Efficiency) is the comparison standard of the manufacturers of contemporary ships. The standard is based on the application of a more modern design of the diesel engines, the wide use of waste heat and the efficient operation of the ship.In accordance with the Economic Operation, the need to evaluate the design of air conditioning systems has been identified in order to determine the possible savings, which are represented by a decrease in fuel consumption, as a result of: the significant impact of this consumption in the operation of the ship, the current high costs of this energy, the periodic increase in the price of the same, and the international policies for the reduction of emissions to the atmosphere and preservation of the environment.By means of the energy diagnosis of the air conditioning system it is possible to determine the possible opportunities of energy saving during the operation of the ship.The results indicate that the thermal load and the cooling capacity required by the air conditioned spaces have a difference between their maximum and average value of 14%. This justifies the need to use a conditioning system with a variable volume of air supplied to the air conditioned space.


2011 ◽  
Vol 2011.21 (0) ◽  
pp. 248-251
Author(s):  
Ari YOSHII ◽  
Yosuke UDAGAWA ◽  
Masahide YANAGI ◽  
Shisei WARAGAI ◽  
Keigo MATSUO ◽  
...  

2021 ◽  
Vol 937 (4) ◽  
pp. 042037
Author(s):  
Gregory Vasilyev ◽  
Victor Gornov ◽  
Marina Kolesova ◽  
Vitaliy Leskov ◽  
Victoria Silaeva ◽  
...  

Abstract Experimental studies of this article are aimed at solving the problem of reforming the housing and communal services of Russia through rational integration of non-traditional energy sources and secondary energy resources into the energy balance of buildings and structures. An important component of the work was the creation and development of industrial production of reliable competitive heat pump systems of a new generation, cogenerating heat energy and cold in an autonomous mode and providing energy savings of at least 50% due to the combined use of low-potential thermal energy of the soil, the atmospheric air and the exhaust air of ventilation systems for hot water supply and air conditioning systems of apartment buildings.


Author(s):  
G. Schmitz ◽  
A. Joos ◽  
W. Casas

During summer, the use of conventional electrically driven air conditioning systems often results in high electricity consumption. On the other hand, heat demand is very low, therefore heat from Combined Heat and Power plants (CHP) or from solar collectors can not be used. Thermal driven desiccant assisted air conditioning systems offer the possibility to shift energy requirements from electricity to heat. Furthermore, as sorptive pre-drying air doesn’t require cooling under dew point for dehumidifying nor any subsequent heating, cold sources at higher temperatures (e.g. 18°C) can be used for cooling. Within the scope of research projects, different demonstration plants for office buildings and a private bungalow were built, where the operations were evaluated by the Hamburg University of Technology. One plant combines a desiccant wheel with a small (5 kWel) gas driven co-generation plant. Instead of an electric chiller or a water evaporation system (desiccant evaporating cooling), borehole heat exchangers in combination with a radiant floor heating system were used for cooling in summer. In this paper, performance comparisons with conventional systems based on numerical simulations and measurement data are shown, including a cost analysis. It is found that the combination of desiccant wheels and earth energy systems offers considerable energy savings compared to conventional electric systems. The operation of such systems is also cost-effective. It can lead to a reduction of up to 28% of primary energy consumption in a whole year compared to a conventional A/C system.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Albert Ayang ◽  
Paul-Salomon Ngohe-Ekam ◽  
Bossou Videme ◽  
Jean Temga

In this paper, the work consists of categorizing telecommunication base stations (BTS) for the Sahel area of Cameroon according to their power consumption per month. It consists also of proposing a model of a power consumption and finally proceeding to energy audits in each type of base station in order to outline the possibilities of realizing energy savings. Three types of telecommunication base stations (BTS) are found in the Sahel area of Cameroon. The energy model takes into account power consumption of all equipment located in base stations (BTS). The energy audits showed that mismanagement of lighting systems, and of air-conditioning systems, and the type of buildings increased the power consumption of the base station. By applying energy savings techniques proposed for base stations (BTS) in the Sahel zone, up to 17% of energy savings are realized in CRTV base stations, approximately 24.4% of energy are realized in the base station of Missinguileo, and approximately 14.5% of energy savings are realized in the base station of Maroua market.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2597-2604
Author(s):  
Razika Kharchi ◽  
Khaled Imessad

A significant portion of energy consumed in buildings is due to energy usage by heating, ventilation, and air conditioning systems. Free cooling is a good option for energy savings in the systems. In recent years, scientists, engineers, and architects designed successful and innovative buildings which use passive cooling techniques, such as natural ventilation. The house studied in the present work, is a pilot project undertaken jointly by the Centre for Development of Renewable Energies (CDER) and the National Centre for Studies and Research of the integrated building (CNERIB) in the framework of the MED-ENEC project (Mediterranean Energy Efficiency in Construction structure). The house under consideration has a surface area of 65 m2 and is located in the region of Algiers which characterized by a Mediterranean climate with relatively mild winters and a hot and humid summer. The aim of this work is to study the thermal comfort inside the house in summer without air conditioning systems, only ventilation is considered. The aim of this work is to study the effect of natural ventilation on both thermal and hygrometric comfort inside the house during the summer period. Numerical simulation is made using the TRNSYS software and the results obtained are in good agreement with measured values. The prototype home is designed in a way that natural ventilation allows thermal comfort which induced energy saving from air conditioning. The mean temperature measured in the interior of the house is 26?C. The relative humidity reaches about 70% in August. Thermal comfort is related to relative humidity that are the essential parameters of the feeling of comfort. Humidity is an important parameter in thermal comfort, it is why we can conclude that we have reached a relatively good hygrothermal comfort.


Sign in / Sign up

Export Citation Format

Share Document