scholarly journals Recrystallization behaviour of IF steel at the interface of Al junction

2021 ◽  
Vol 1121 (1) ◽  
pp. 012012
Author(s):  
K Okuda ◽  
K Han ◽  
R Kainuma
Keyword(s):  
2001 ◽  
Vol 7 (S2) ◽  
pp. 508-509
Author(s):  
W. Regone ◽  
A. M. 𝚓orge Júnior ◽  
O. Balancin

Upon hot strip mill of titanium Interstitial Free (IF) steels, during cooling from austenite to ferrite region, the level of interstitial elements not removed by steelmaking process is dropped down by Ti that combines with N, C and S. Some authors [1-3] have reported that the traditional precipitation sequence TiN, TiS, Ti4C2S2 and TiC occurs with freestanding particles formed by nucleation and growth processes. Other authors [4] have indicated that the transformation from TiS to Ti4C2S2 may be considered as a hybrid of shear and diffusion, i.e., faulted Ti8S9 (9R) + 10[Ti] + 9[C] → 41/2Ti4C2S2 (or H for its hexagonal crystal structure). At low temperature (≤930°C), the stabilization process continues through epitaxial growth of carbides on H phase. to study the evolution of precipitation upon hot strip mill conditions, samples of a Ti - IF steel were subjected to double straining tests [5] by means of a computerized hot torsion machine, at 1000 °C and 920 °C, with strain rate of 1 s-1 and interpass times ranging from 0.5 to 100 s.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
J. Baalamurugan ◽  
V. Ganesh Kumar ◽  
T. Stalin Dhas ◽  
S. Taran ◽  
S. Nalini ◽  
...  

AbstractMetals and metal oxide-based nanocomposites play a significant role over the control of microbes. In this study, antibacterial activity of iron oxide (Fe2O3) nanocomposites based on induction furnace (IF) steel slag has been carried out. IF steel slag is an industrial by-product generated from secondary steel manufacturing process and has various metal oxides which includes Al2O3 (7.89%), MnO (5.06), CaO (1.49%) and specifically Fe2O3 (14.30%) in higher content along with metalloid SiO2 (66.42). Antibacterial activity of iron oxide nanocomposites has been revealed on bacterial species such as Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus. Micrococcus luteus has undergone maximum zone of inhibition (ZOI) of 12 mm for 10 mg/mL concentration of steel slag iron oxide nanocomposite. Growth inhibitory kinetics of bacterial species has been studied using ELISA microplate reader at 660 nm by varying the concentration of steel slag iron oxide nanocomposites. The results illustrate that IF steel slag is a potential material and can be utilized in building materials to increase the resistance against biodeterioration. Graphic abstract


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1473
Author(s):  
Hao Wang ◽  
Yanping Bao ◽  
Chengyi Duan ◽  
Lu Lu ◽  
Yan Liu ◽  
...  

The influence of rare earth Ce on the deep stamping property of high-strength interstitial-free (IF) steel containing phosphorus was analyzed. After adding 120 kg ferrocerium alloy (Ce content is 10%) in the steel, the inclusion statistics and the two-dimensional morphology of the samples in the direction of 1/4 thickness of slab and each rolling process were observed and compared by scanning electron microscope (SEM). After the samples in each rolling process were treated by acid leaching, the three-dimensional morphology and components of the second phase precipitates were observed by SEM and energy dispersive spectrometer (EDS). The microstructure of the sample was observed by optical microscope, and the grain size was compared. Meanwhile, the content and strength of the favorable texture were analyzed by X-ray diffraction (XRD). Finally, the mechanical properties of the product were analyzed. The results showed that: (1) The combination of rare earth Ce with activity O and S in steel had lower Gibbs free energy, and it was easy to generate CeAlO3, Ce2O2S, and Ce2O3. The inclusions size was obviously reduced, but the number of inclusions was increased after adding rare earth. The morphology of inclusions changed from chain and strip to spherical. The size of rare earth inclusions was mostly about 2–5 μm, distributed and dispersed, and their elastic modulus was close to that of steel matrix, which was conducive to improving the structure continuity of steel. (2) The rare earth compound had a high melting point. As a heterogeneous nucleation point, the nucleation rate was increased and the solidification structure was refined. The grade of grain size of products was increased by 1.5 grades, which is helpful to improve the strength and plasticity of metal. (3) Rare earth Ce can inhibit the segregation of P element at the grain boundary and the precipitation of Fe(Nb+Ti)P phase. It can effectively increase the solid solution amount of P element in steel, improve the solid solution strengthening effect of P element in high-strength IF steel, and obtain a large proportion of {111} favorable texture, which is conducive to improving the stamping formability index r90 value.


2000 ◽  
Vol 321-324 ◽  
pp. 720-725 ◽  
Author(s):  
Olivier Castelnau ◽  
Tamás Ungár ◽  
A. Miroux ◽  
Thierry Chauveau ◽  
Brigitte Bacroix
Keyword(s):  
If Steel ◽  

2011 ◽  
Vol 399-401 ◽  
pp. 148-151
Author(s):  
Min Li Wang ◽  
Zhi Wang Zheng ◽  
Li Xiao

Hot rolled 260MPa grade high strength Nb-IF steel sheet was used to study the effect of coiling temperature and cold reduction ratio on the microstructures and mechanical properties. The experimental results showed that the recrystallization has finished. Under 650°Ccoiling temperature and 75% cold reduction ratio, and under 600°C or 700°C coiling temperature and 65% cold reduction ratio, the plastic strain ratio r value and the strain hardening exponent n value were reached the maximum, and respectively, the r value was approximate 1.8, the n value was approximate 0.26. That obtains optimally match of high strength and punching property.


2008 ◽  
Vol 473 (1-2) ◽  
pp. 342-354 ◽  
Author(s):  
A. Samet-Meziou ◽  
A.L. Etter ◽  
T. Baudin ◽  
R. Penelle
Keyword(s):  

2007 ◽  
Vol 42 (16) ◽  
pp. 6572-6577 ◽  
Author(s):  
Jefferson Fabrício Cardoso Lins ◽  
Hugo Ricardo Z. Sandim ◽  
Hans-Jürgen Kestenbach

Sign in / Sign up

Export Citation Format

Share Document