scholarly journals Strengthening flat slabs without shear reinforcement against punching shear by concrete overlay

2021 ◽  
Vol 1209 (1) ◽  
pp. 012056
Author(s):  
D Čereš ◽  
K Gajdošová

Abstract Research in this paper presents a theoretical study of increasing in punching shear capacity of the strengthened flat slab by concrete overlay. The parametric study is based on comparison of three different relevant standards design models and presents results how Eurocode 2 (EN 1992-1-1), Model Code 2010 and draft of second generation of Eurocode 2 (prEN 1992-1-1) take into account strengthening by concrete overlay. A reference specimen is represented by a fragment of a flat slab supported by circular column. Influence of concrete toppings depends on thickness and also on reinforcement ratio. In Eurocode 2 and new generation of Eurocode 2 the increase of punching shear resistance of the slab with concrete topping can be taken into account only by reinforcement ratio and thickness of the slab considering the perfect connection and bond between the original slab and new layer of concrete overlay. Model Code 2010 is based on Critical shear crack theory and the reinforcement ratio in concrete topping was considered in equation of moment of resistance and punching shear resistance is calculated by considering the rotation and deformation of the slab. Estimation of results by parametric study are compared by non-linear model from Atena software.

2021 ◽  
Vol 1203 (2) ◽  
pp. 022108
Author(s):  
Daniel Čereš ◽  
Katarína Gajdošová

Abstract The main reasons for strengthening flat slabs are the change of the use of a building, increase in the value of loads, degradation of the concrete cover layer, or insufficient reinforcement. This paper is focused on the assessment of punching shear capacity of the strengthened flat slabs without shear reinforcement. One of the possibilities how to enhance punching shear capacity is the addition of reinforced concrete topping. The main goal of this paper is to compare the possibilities for calculation of the increase in the punching shear capacity by investigation of the influence of different thicknesses of concrete toppings and different reinforcement ratio. A reference specimen is represented by a fragment of a flat slab with the thickness of h = 200 mm supported by circular column with the diameter of 250 mm. Three different thicknesses (50 mm, 100 mm, 150 mm) of concrete toppings were considered together with three different reinforcement ratios for each thickness of concrete overlay. Theoretical predictions of the punching shear resistance of flat slabs were evaluated by design guidelines according to the relevant standards: Eurocode 2 (EN 1992-1-1), Model Code 2010 and draft of the second generation of Eurocode 2 (prEN 1992-1-1). The differences in the influence of reinforcement ratio are significant. In Model Code 2010 the reinforcement ratio in concrete topping was considered in equation of moment of resistance. This is unlike in both of the mentioned Eurocodes, where the reinforcement ratio was assumed as a geometric average value of the original reinforcement ratio in the slab before strengthening and of the reinforcement ratio of concrete topping. All the predicted theoretical calculations are based on the perfect connection and bond between the original and new layer of concrete. These predictions should be verified by experimental investigation, which is going to be prepared shortly. By the additional increase in the thickness of concrete topping or in the amount of added reinforcement the attention should be payed to the limitation of the punching shear resistance by the value of the maximum punching shear resistance in the compression concrete strut.


2016 ◽  
Vol 821 ◽  
pp. 703-708
Author(s):  
Ján Hanzel ◽  
Lucia Majtánová ◽  
Jaroslav Halvonik

Model for assessment of punching resistance in Eurocode 2 has been taken over from Model Code 1990. The model is fully empirical and was developed in 70s based on the experimental results obtained on flat slab specimens mainly loaded under axis-symmetric conditions. Therefore some doubts are soaring about applicability of the model for assessment of slab members exposed to the different conditions. Spread footings and foundation slabs represent such members. Growing number of experiments carried out on the footings last two decades allowed us to check safety of current model and compare it with the safety of the new models e.g. mechanical model based on the Critical Shear Crack Theory (CSCT) published in Model Code 2010 or amendments of EC2 model proposed by German group.


2012 ◽  
Vol 5 (5) ◽  
pp. 659-691 ◽  
Author(s):  
P. V. P. Sacramento ◽  
M. P. Ferreira ◽  
D. R. C. Oliveira ◽  
G. S. S. A. Melo

Punching strength is a critical point in the design of flat slabs and due to the lack of a theoretical method capable of explaining this phenomenon, empirical formulations presented by codes of practice are still the most used method to check the bearing capacity of slab-column connections. This paper discusses relevant aspects of the development of flat slabs, the factors that influence the punching resistance of slabs without shear reinforcement and makes comparisons between the experimental results organized in a database with 74 slabs carefully selected with theoretical results using the recommendations of ACI 318, EUROCODE 2 and NBR 6118 and also through the Critical Shear Crack Theory, presented by Muttoni (2008) and incorporated the new fib Model Code (2010).


2014 ◽  
Vol 13 (3) ◽  
pp. 151-158
Author(s):  
Marta Słowik

In the paper, the influence of longitudinal reinforcement on shear capacity of reinforced concrete members without shear reinforcement is discussed. The problem is analyzed on the basis of the author’s own test results and tests results reported in the professional literature. It has been concluded that longitudinal reinforcement has an effect on shear capacity especially in members of shear span-to-depth ratio a/d < 2,5. The test results have also been used to verify standard methods of calculating the shear capacity in reinforced concrete members without shear reinforcement given in Eurocode 2, ACI Standard 318 and Model Code 2010.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1711
Author(s):  
Changyong Li ◽  
Na Liang ◽  
Minglei Zhao ◽  
Kunqi Yao ◽  
Jie Li ◽  
...  

This paper is the outcome of experiments on the shear performance of reinforced concrete beams with approved composite-recycled aggregates. The strength grade of composite-recycled aggregate concrete (CRAC) was between 30 MPa and 60 MPa. The shear span-to-depth ratio varied from 1 to 3. The adaptability of HRB400 rebar, with critical yield strength of 400 MPa, used as stirrups was also verified. As the composite technology overcame the shortcomings of recycled coarse aggregate, CRAC had similar mechanical properties with those of conventional concrete. Details on the shear behaviors of test beams under a four-point loading test are presented. The results indicated that the changes of CRAC strain, stirrup strain, and shear-crack width depended on the failure patterns, which are controlled by the shear-span to depth ratio. The stirrups yield at the failure of reinforced CRAC beams. The shear cracking resistance and the shear capacity of reinforced CRAC beams can be predicted by the statistical equations. Based on the design codes GB50010, ACI318-19, Model Code 2010 and DIN-1045-1-2008 for conventional reinforced concrete beams, the shear strengths provided by CRAC and stirrups are statistical analyzed. The rationality of the design equations is examined by the utilization level of shear strength provided by CRAC. The maximum shear-crack widths are extracted from the test data of reinforced CRAC beams at normal service state. Comparatively, by specifying the lower limit of shear strength provided by the CRAC with various shear-span to depth ratios, China code GB50010 gives a rational method for utilizing CRAC. Under the premise that the design of shear capacity would give considerations to meet the normal serviceability, the factored strength of HRB400 rebar should be 360 MPa for the calculation of shear strength provided by stirrups. The design methods in codes of GB50010, ACI318-19 and Model Code 2010 are conservative for the shear capacity of reinforced CRAC beams.


2018 ◽  
Vol 11 (2) ◽  
pp. 432-454
Author(s):  
D. F. A. SANTOS ◽  
A. F. LIMA NETO ◽  
M. P. FERREIRA

Abstract Punching is a possible failure mode for slender footings and it may lead a structure to ruin through progressive collapse. Although footing present different geometric characteristics, their punching shear design is based on the empirical methods used for flat slabs. This paper uses experimental results from 216 tests to evaluate the performance of design code recommendations presented by ACI 318 (2014), ABNT NBR 6118 (2014) and Eurocode 2 (2010) to estimate the punching shear resistance of reinforced concrete footings. Great dispersion between theoretical and experimental results was observed, being evident that the test system affects the punching shear capacity of footings. The more complex method proposed by Eurocode 2 resulted in a better correlation with experimental results.


Author(s):  
Fernanda Gabriella Batista Santos Oliveira ◽  
Luis Fernando Sampaio Soares ◽  
Robert Lars Vollum

abstract: This paper assesses the influence of slab continuity on the punching resistance of a realistically proportioned flat slab floor plate without shear reinforcement. The edge column punching resistance of a symmetric flat slab extending bays in each direction was assessed by means of NLFEA with TNO DIANA, MC2010 levels II, III, IV, Eurocode 2 and NBR 6118. Both Eurocode 2 and NBR 6118 are seen to give similar predictions for punching resistance, while MC2010, which is based on the Critical Shear Crack Theory and depends on how rotations are calculated and FE modelling assumptions, varies significantly with its levels of approximation with Level IV agreeing reasonably well with predictions from NLFEA. Direction for the critical rotations is shown to vary and can also be influenced by the reinforcement over the span. For EC2, NBR 6118 and MC2010 LoA II and III punching shear design are independent of span, unlike the results obtained with MC2010 LoA IV.


2019 ◽  
Vol 12 (3) ◽  
pp. 445-478
Author(s):  
M. J. M. PEREIRA FILHO ◽  
M. V. P. FREITAS ◽  
D. F. A. SANTOS ◽  
A. J. C. NASCIMENTO ◽  
M. P. FERREIRA

Abstract Structural accidents due to punching shear failures have been reported in flat slab buildings. Design recommendations presented by codes can lead to entirely different punching shear resistance estimates for similar situations. Furthermore, design codes do not present guidelines for the design of punching shear strengthening of existing slabs. This paper uses a database with 118 experimental results to discuss the performance of theoretical estimates of punching shear resistance using ACI 318, Eurocode 2 and ABNT NBR 6118 in the case of slabs without shear reinforcement. Another database with results of 62 tests on slabs strengthened with post-installed steel and CFRP dowels is used to evaluate the performance of these strengthening techniques and to propose adaptations in codes to allow their use in punching shear strengthening situations of existing slab-column connections.


2021 ◽  
Vol 31 (1) ◽  
pp. 93-105
Author(s):  
Grzegorz Sadowski ◽  
Piotr Wiliński ◽  
Anna Halicka

Abstract This paper presents a comparative analysis of shear resistance in the interface between two concrete parts of concrete composite beam. The construction joint was performed as indented one in accordance with Eurocode 2 and fib Model Code 2010. The numerical calculation results were confronted with the actual results of tests of a composite beam subjected to 4-point bending. The displacement values of tested element were obtained using dial sensors and the digital image correlation method (DIC). The analysis shows that the recommendations of Eurocode 2-1-1 and fib Model Code 2010 do not reflect the actual behavior of concrete composite beam with indented surface.


Sign in / Sign up

Export Citation Format

Share Document