scholarly journals Optimization of the operation of Dokan hydropower development using Cuckoo Search Algorithm

2022 ◽  
Vol 1216 (1) ◽  
pp. 012016
Author(s):  
K Ahmad-Rashid

Abstract In this paper one of the recently developed metaheuristic algorithms, the Cuckoo Search algorithm is used for the optimization of the operation of a large hydropower plant in Kurdistan, Iraq. The optimization problem is to realize an annual planned energy generation with monthly imposed fractions. The obtained results are excellent, nevertheless, there are some limitations of the algorithm determined by the initial level into the reservoir and a certain correlation between the type of the year, the starting level and the planned energy to be realized.

2020 ◽  
Vol 51 (1) ◽  
pp. 143-160
Author(s):  
Liang Chen ◽  
Wenyan Gan ◽  
Hongwei Li ◽  
Kai Cheng ◽  
Darong Pan ◽  
...  

2017 ◽  
Vol 261 ◽  
pp. 394-401 ◽  
Author(s):  
Shibendu Mahata ◽  
Suman Kumar Saha ◽  
Rajib Kar ◽  
Durbadal Mandal

Discrete rational approximation models to the non-integer order differentiator sλ, where λ ε (0, 1), using Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The proposed metaheuristic optimization approach used to design the discrete non-integer order differentiators (DNODs) does not employ any s-to-z domain mapping function to perform the discretization operation. Frequency domain characteristics of DNODs, solution reliability, and algorithm convergence performances are investigated among MFO and an advanced evolutionary algorithm called Particle Swarm Optimization with adaptive inertia weight (PSO-w). Results demonstrate the effectiveness of MFO in outperforming PSO-w in solving this non-linear and multimodal optimization problem. The proposed DNODs also exhibit better performance in comparison with the designs based on techniques such as Nelder-Mead Simplex algorithm and Cuckoo Search Algorithm published in recent literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yanhong Feng ◽  
Ke Jia ◽  
Yichao He

Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions.


Author(s):  
Muhammad Zakyizzuddin Bin Rosselan ◽  
Shahril Irwan Bin Sulaiman ◽  
Norhalida Othman

In this study proposes an evaluation of different computational intelligences, i.e Fast-Evolutionary Algorithm (FEP), Firefly Algorithm (FA) and Mutate-Cuckoo Search Algorithm (MCSA) for solving single-objective optimization problem. FEP and MCSA are based on the conventional Evolutionary Programming (EP) and Cuckoo Search Algorithm (CSA) with modifications and adjustment to boost up their search ability. In this paper, four different benchmark functions were used to compare the optimization performance of these three algorithms. The results showed that MCSA is better compare with FEP and FA in term of fitness value while FEP is fastest algorithm in term of computational time compare with other two algorithms.


2018 ◽  
Vol 39 (3) ◽  
pp. 761-771
Author(s):  
Chun-Tang Chao ◽  
Ming-Tang Liu ◽  
Chi-Jo Wang ◽  
Juing-Shian Chiou

This paper presents a fuzzy adaptive cuckoo search algorithm to improve the cuckoo search algorithm, which may easily fall into a local optimum when handling multiobjective optimization problems. The Fuzzy–Proportional-Integral-Derivative (PID) controller design for an active micro-suspension system has been incorporated into the proposed fuzzy adaptive cuckoo search algorithm to improve both driving comfort and road handling. In the past research, a genetic algorithm was often applied in Fuzzy–PID controller design. However, when the dimension is high and there are numerous local optima, the traditional genetic algorithm will not only have a premature convergence, but may also be trapped in the local optima. In the proposed fuzzy adaptive cuckoo search, all parameters of the PID controller and fuzzy rules are real coded to 75 bits in the optimization problem. Moreover, a fuzzy adaptive strategy is proposed for dynamically adjusting the learning parameters in the fuzzy adaptive cuckoo search, and this indeed enables global convergence. Experimental results verify that the proposed fuzzy adaptive cuckoo search algorithm can shorten the computing time in the evolution process and increase accuracy in the multiobjective optimization problem.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1662-1665
Author(s):  
Jing Xing Fan ◽  
Yue Guang Li

Time-table Problem of universities is a many factor of the global optimization problem. In this paper, according to the characteristics of time-table problem, an improve Cuckoo Search Algorithm was used to solve the Time-table Problem, adopting the code rule of randomized key representation based on the smallest position value, and then the design scheme of time-table problem of universities based on improved cuckoo search algorithm was expounded through studying influence factors of time-table problem of universities. Finally,the result shows the algorithm is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document