scholarly journals Parameter optimization of Cuckoo Search Algorithm for Multi Dimensional Function Optimization Problem

2018 ◽  
Vol 7 (18) ◽  
pp. 6-10
Author(s):  
Mohammad Shafiul ◽  
Samiha Sara ◽  
Sanonda Datta ◽  
Jannatun Razia
Author(s):  
Pauline Ong ◽  
S. Kohshelan

A new optimization algorithm, specifically, the cuckoo search algorithm (CSA), which inspired by the unique breeding strategy of cuckoos, has been developed recently. Preliminary studies demonstrated the comparative performances of the CSA as opposed to genetic algorithm and particle swarm optimization, however, with the competitive advantage of employing fewer control parameters. Given enough computation, the CSA is guaranteed to converge to the optimal solutions, albeit the search process associated to the random-walk behavior might be time-consuming. Moreover, the drawback from the fixed step size searching strategy in the inner computation of CSA still remain unsolved. The adaptive cuckoo search algorithm (ACSA), with the effort in the aspect of integrating an adaptive search strategy, was attached in this study. Its beneficial potential are analyzed in the benchmark test function optimization, as well as engineering optimization problem. Results showed that the proposed ACSA improved over the classical CSA.


2020 ◽  
Vol 51 (1) ◽  
pp. 143-160
Author(s):  
Liang Chen ◽  
Wenyan Gan ◽  
Hongwei Li ◽  
Kai Cheng ◽  
Darong Pan ◽  
...  

2017 ◽  
Vol 261 ◽  
pp. 394-401 ◽  
Author(s):  
Shibendu Mahata ◽  
Suman Kumar Saha ◽  
Rajib Kar ◽  
Durbadal Mandal

Discrete rational approximation models to the non-integer order differentiator sλ, where λ ε (0, 1), using Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The proposed metaheuristic optimization approach used to design the discrete non-integer order differentiators (DNODs) does not employ any s-to-z domain mapping function to perform the discretization operation. Frequency domain characteristics of DNODs, solution reliability, and algorithm convergence performances are investigated among MFO and an advanced evolutionary algorithm called Particle Swarm Optimization with adaptive inertia weight (PSO-w). Results demonstrate the effectiveness of MFO in outperforming PSO-w in solving this non-linear and multimodal optimization problem. The proposed DNODs also exhibit better performance in comparison with the designs based on techniques such as Nelder-Mead Simplex algorithm and Cuckoo Search Algorithm published in recent literature.


Sign in / Sign up

Export Citation Format

Share Document