Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

2011 ◽  
Vol 18 (11) ◽  
pp. 112020 ◽  
Author(s):  
S R Teixeira ◽  
M Romero ◽  
J Ma Rincón ◽  
R S Magalhães ◽  
A E Souza ◽  
...  
2014 ◽  
Vol 98 ◽  
pp. 209-214 ◽  
Author(s):  
Silvio R. Teixeira ◽  
Agda E. Souza ◽  
Claudio L. Carvalho ◽  
Victor C.S. Reynoso ◽  
Maximina Romero ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2133
Author(s):  
Laura Landa-Ruiz ◽  
Miguel Angel Baltazar-Zamora ◽  
Juan Bosch ◽  
Jacob Ress ◽  
Griselda Santiago-Hurtado ◽  
...  

This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures.


2020 ◽  
Vol 32 ◽  
pp. 101694
Author(s):  
Marcos A.S. Anjos ◽  
Tomaz R. Araújo ◽  
Ruan L.S. Ferreira ◽  
Evilane C. Farias ◽  
Antonio E. Martinelli

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
R. Berenguer ◽  
N. Lima ◽  
A. C. Valdés ◽  
M. H. F. Medeiros ◽  
N. B. D. Lima ◽  
...  

The environmental impact of cement production increased significantly in the previous years. For each ton of cement produced, approximately a ton of carbon dioxide is emitted in decarbonation (50%), clinker furnace combustion (40%), raw materials transport (5%), and electricity (5%). Green strategies have been advanced to reduce it, adding natural or waste materials to substitute components or reinforce the mortar, like fibers or ashes. Sugar cane bagasse ash is a by-product generated from sugar boilers and alcohol factories with capacity to be used in concrete production. Composed mainly of silica, it can be used as mortar and concrete mineral admixture, providing great economic and environmental advantages, particularly in regions with sugar culture and industrial transformation like Brazil. In this research, a study of partial substitution of Portland cement by sugar cane bagasse (SCB) is analyzed, in order to reduce clinker in concrete volume, responsible for high emission of CO2 to the atmosphere. An experimental campaign with cementitious pastes was carried out to evaluate the durability properties’ changes due to SCB ash use. Samples containing 15% of sugarcane bagasse ash unveiled good results in terms of durability, indicating that concrete structure with sugar cane ash research is a new and important scientific topic to be highlighted.


2012 ◽  
Vol 93 ◽  
pp. 104-112 ◽  
Author(s):  
F.A. López ◽  
M.I. Martín ◽  
F.J. Alguacil ◽  
J. Ma. Rincón ◽  
T.A. Centeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document