scholarly journals Multi-Scale Pull-Out Resistance of Steel Reinforcing Bar Embedded in Hybrid Fiber Reinforced Concrete (HYFRC)

Author(s):  
A Lin ◽  
C P Ostertag
2019 ◽  
Vol 29 (1) ◽  
pp. 19-44 ◽  
Author(s):  
Yao Zhang ◽  
J Woody Ju ◽  
Hehua Zhu ◽  
Zhiguo Yan

A multi-scale micromechanical model is proposed to predict the damage degree of hybrid fiber-reinforced concrete under or after high temperatures. The thermal degradation of hybrid fiber-reinforced concrete is generally composed of the damage of the cement paste caused by thermal decomposition and thermal incompatibility, the deterioration of aggregates and fibers, and the interfacial damage between aggregates and the matrix. In this multi-scale model, four levels of hybrid fiber-reinforced concrete structures are considered when the thermal damage degree is derived; namely, the equivalent calcium silicate hydrate (C–S–H) product level, the cement paste level, the concrete level, and the hybrid fiber-reinforced concrete level. At the cement paste level, thermal decompositions of C–S–H product and calcium hydroxide are taken into account. In addition, a dimensionless parameter of the crack density is introduced to represent the thermal cracking of the matrix. At the concrete level, the interfacial damage of aggregates is simulated by a spring–interface model, in which the interfacial parameters are assumed to be functions of temperature. Moreover, at the cement paste level and the hybrid fiber-reinforced concrete level, a sub-stepping homogenization method is proposed to determine the effective properties. Comparisons between previously published experimental data and predictions and discussions illustrate the feasibility of the proposed multi-scale model in predicting thermal damage of concrete and hybrid fiber-reinforced concrete.


2013 ◽  
Vol 17 (7) ◽  
pp. 1700-1707 ◽  
Author(s):  
Rashid Hameed ◽  
Anaclet Turatsinze ◽  
Frédéric Duprat ◽  
Alain Sellier

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Peng Deng ◽  
Yan Sun ◽  
Yan Liu ◽  
Xiaoxiao Song

Rebound hammer tests and postinstalled pull-out tests are commonly used for evaluating the compressive strength of ordinary concrete, and the strength of concrete is estimated by strength curves. However, using these strength curves to predict the compressive strength of carbon fiber-reinforced concrete (CFRC), polypropylene fiber-reinforced concrete (PFRC), and carbon-polypropylene hybrid fiber-reinforced concrete (HFRC) may lead to considerable uncertainties. Therefore, this study revises the strength curves derived from rebound hammer tests and postinstalled pull-out tests for ordinary concrete. 480 specimens of fiber-reinforced concrete (FRC) of six strength grades are examined. Standard cube compressive strength tests are used as a reference, and the results of various regression models are compared. The linear model is determined as the most accurate model for postinstalled pull-out tests, whereas the power model is the most accurate for rebound hammer tests. The proposed strength curves have important applications for FRC engineering of the postinstalled pull-out tests and rebound hammer tests.


2016 ◽  
Vol 711 ◽  
pp. 195-202
Author(s):  
Wilson Nguyen ◽  
Jacob F. Duncan ◽  
Paulo J.M. Monteiro ◽  
Claudia P. Ostertag

Many reinforced concrete structures susceptible to corrosion damage are subjected to externally applied loads, causing cracking. These cracks increase the permeability of the material, accelerating the ingress of corrosion-inducing deleterious agents. In this paper, the effect of multiple microcracking and macrocrack formation on corrosion initiation was investigated. A hybrid fiber-reinforced concrete (HyFRC), which forms ductile, distributed microcracking prior to dominant crack localization due to multiple tiers of fiber reinforcement, is being studied for its performance against corrosion damage. The effect of matrix cracking on corrosion initiation was studied with beam specimens preloaded in flexure prior to long-term corrosion exposure. Reinforced HyFRC composites were found to have a delayed corrosion initiation response due to reductions in crack widths and suppression of splitting cracks, compared to conventional reinforced concrete. The influence of microcracks on corrosion is studied using X-ray micro-computed tomography (μCT) on reinforced fiber-reinforced cementitious composites and reinforced mortar preloaded in tension.


2021 ◽  
Vol 1895 (1) ◽  
pp. 012053
Author(s):  
Hadeel M. Shakir ◽  
Ahmed Farhan Al-Tameemi ◽  
Adel A. Al-Azzawi

2013 ◽  
Vol 327 ◽  
pp. 201-204
Author(s):  
Jin Song Shi ◽  
Bo Yuan ◽  
Da Zhang Wang ◽  
Zhe An Lu

In order to investigate the difference of current toughness index standards for fiber reinforced concrete, two main groups of specimens were made to take bending toughness test with the requirements of corresponded standards, loading methods and loading speeds, which are ASTM C1018 in America, ACI 544 and JSCE G552 in Japan. United with software Origin, the load-deflection curves gathered from bending test was calculated with relative standards. The results show that the calculated toughness index value with ASTM C1018-98 in America is more accurate with three grades but the requested deflection of testing is much longer than others while ACI 544 and JSCE G552 in Japan are quite the contrary.


Sign in / Sign up

Export Citation Format

Share Document