scholarly journals Effect of Different Matrix Compositions and Micro Steel Fibers on Tensile Behavior of Textile Reinforced Concrete

Author(s):  
J Esmaeili ◽  
I Sharifi ◽  
K Andalibi ◽  
J Kasaei
2021 ◽  
Vol 72 (1) ◽  
pp. 127-142
Author(s):  
Tien Tran Manh ◽  
Tu Do Ngoc ◽  
Hong Vu Xuan

Over the past two decades, textile-reinforced concrete (TRC) materials have been increasingly and widely used for the strengthening/reinforcement of civil engineering works. Thanks to their many advantages as the durability, considerable bond strength with the reinforced concrete (RC) members, best recycling conditions, the TRC materials are considered as an optimal alternative solution to substitute the traditional strengthening and reinforcing materials FRP (Fiber-Reinforced Polymer). The mechanical behavior of TRC composite has been characterized in previous experimental studies. This paper presents a state-of-the-art review of the mechanical behavior of TRC composite under tensile loading. By inheriting from previous review studies, this paper updates the experimental studies on the tensile behavior of TRC composite in the last decade. The review addresses, firstly the mechanical properties of constituent materials in TRC as reinforcement textile, cementitious matrix, and textile/matrix interface. Secondly, it addresses the tensile behavior of TRC composite, including the characterization methods as well as analyses of its strain-hardening behavior with different phases. The paper then discusses the main factors which influence the mechanical behavior of TRC materials in the available experimental studies. Finally, the conclusion of this review terminates this paper.


2016 ◽  
Vol 106 (7) ◽  
pp. 646-653
Author(s):  
Yingxiong LI ◽  
Alexander SCHOLZEN ◽  
Rostislav CHUDOBA ◽  
Josef HEGGER

2019 ◽  
Vol 96 ◽  
pp. 33-45 ◽  
Author(s):  
Deju Zhu ◽  
Sai Liu ◽  
Yiming Yao ◽  
Gaosheng Li ◽  
Yunxing Du ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
In-Hwan Yang ◽  
Changbin Joh ◽  
The Quang Bui

The tensile behavior of ultrahigh-performance fiber-reinforced concrete (UHPFRC) depends on the dispersion and orientation of steel fibers within the concrete matrix. The uneven dispersion of randomly oriented steel fibers in concrete may cause differences in the tensile behavior between material testing specimens and beams. Therefore, in this study, the tensile behavior was investigated by fitting the analysis result of the moment-curvature curve to the experimental result of a UHPFRC beam. To this end, three UHPFRC mixtures with different compressive strengths were fabricated to test the material properties and flexural behavior of UHPFRC beams. Both a single type of steel fiber and a combination of steel fiber types were used with volume fractions of 1.0% and 1.5%, respectively, in the three mixtures. Based on the design recommendations, the material properties of UHPFRC were modeled. The results ultimately show that by fitting the analysis results to the experimental results of the moment-curvature curves, the tensile strength of UHPFRC beams can be reasonably estimated.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document