scholarly journals Review on supplymentary cementitious materials used in inorganic polymer concrete

Author(s):  
K Srinivasreddy ◽  
K Srinivasan
2013 ◽  
Vol 357-360 ◽  
pp. 1142-1147 ◽  
Author(s):  
Li Ming Yu ◽  
Zhe An Lu ◽  
Xiao Hui Yuan ◽  
Hui Guo Chen

norganic polymer concrete of a new environment-friendly material has been the hot issue in engineering research so far. For this new material, the main job of the paper includes: we design mixture ratios of inorganic polymer concrete by ourselves, testing the concrete in the age periods of 3, 7, 28 d. The results indicate that this kind of material strength develops mainly in the first 3 d, the strength grows slowly in the later stage; the dry shrinkage of the configured concrete properties are measured, the curve of dry shrinkage shows that the dry shrinkage occurs mainly in the first 14 d and develops slowly in the late; And measure the expansion performance of the concrete member mixed the different categories expansive agent, the results show that the volume growth of mortar specimens to join HCSA expansion agent are obvious; Test results provide a certain basis for the inorganic polymer concrete of micro expansion.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


2021 ◽  
Vol 255 ◽  
pp. 112901
Author(s):  
Xiaochun Fan ◽  
Zhengrong Zhou ◽  
Wenlin Tu ◽  
Mingzhong Zhang

1997 ◽  
Vol 506 ◽  
Author(s):  
H. Saito ◽  
T. Tajima ◽  
A. Fujiwara ◽  
Y. Tsuji

ABSTRACTSince cementitious materials used in repositories will be in contact with water, one of the most important tasks is to assess their long-term performance while they are being degraded very slowly by leaching. The authors have proposed an electrochemical acceleration test method and clarified its applicability. In this method, a specimen is placed between two glass vessels containing water. An anode and a cathode connected to a DC power source provide a potential gradient across the specimen. Ca2+ ions in the pore solution move rapidly to the cathode side, and thus hasten cement hydrate dissolution.In this study, we obtained two types of almost homogeneously degraded specimens by controlling cumulative quantity of dissolved Ca2+ ions. In the first type, there was no Ca(OH)2and the C-S-H phases underwent insignificant alteration, whereas in the second type, degradation of the C-S-H phases occurred.As a preliminary evaluation of cementitious materials, diffusion coefficients of tritiated water were measured for nondegraded and degraded specimens. Diffusion coefficients were increased by degradation and closely corresponded to changes in porosity.


Author(s):  
Nicolae Angelescu ◽  
Ioana Ion ◽  
Darius Stanciu ◽  
José Barroso Aguiar ◽  
Elena Valentina Stoian ◽  
...  

Abstract The development of polymeric materials offers new perspectives of science and technology due to their outstanding properties. These properties are obtained either due to the effect of dispersion polymers and their polymerization either due to their intervention in structure formation. They were prepared epoxy resin polymer concrete, Portland cement, coarse and fine aggregate and to evaluate the influence of resin dosage on microstructures and density of such structures reinforced concrete mixtures. The paper detailing the raw materials used in experimental works and structural properties of concrete studied.


Author(s):  
Zoran Drace ◽  
Michael I. Ojovan

The IAEA Coordinated Research Project (CRP) on cementitious materials for radioactive waste management was launched in 2007 [1, 2]. The objective of CRP was to investigate the behaviour and performance of cementitious materials used in radioactive waste management system with various purposes and included waste packages, wasteforms and backfills as well as investigation of interactions and interdependencies of these individual elements during long term storage and disposal. The specific research topics considered were: (i) cementitious materials for radioactive waste packaging: including radioactive waste immobilization into a solid waste form, (ii) waste backfilling and containers; (iii) emerging and alternative cementitious systems; (iv) physical-chemical processes occurring during the hydration and ageing of cement matrices and their influence on the cement matrix quality; (v) methods of production of cementitious materials for: immobilization into wasteform, backfills and containers; (vi) conditions envisaged in the disposal environment for packages (physical and chemical conditions, temperature variations, groundwater, radiation fields); (vii) testing and nondestructive monitoring techniques for quality assurance of cementitious materials; (viii) waste acceptance criteria for waste packages, waste forms and backfills; transport, long term storage and disposal requirements; and finally (ix) modelling or simulation of long term behaviours of cementations materials used for packaging, waste immobilization and backfilling, especially in the post-closure phase. The CRP has gathered overall 26 research organizations from 22 Member States aiming to share their research and practices on the use of cementitious materials [2]. The main research outcomes of the CRP were summarized in a summary report currently under preparation to be published by IAEA. The generic topical sections covered by report are: a) conventional cementitious systems; b) novel cementitious materials and technologies; c) testing and waste acceptance criteria; and d) modelling long term behaviour. These themes as well as all contributions of participating organizations were further developed in the individual reports to be presented in the IAEA publication. The CRP facilitated the exchange of information and research co-operation in resolving similar problems between different institutions and contributed towards improving waste management practices, their efficiency and general enhancement of safety.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zijun Wang ◽  
Boming Zhao ◽  
A. C. D. Royal

Cement-bentonite is one of the main materials used in the seepage barriers to protect earth dams and levees from water erosion. However, the current understanding of the erodibility of the cementitious materials and the interactions between cracked seepage barriers and the water flow is inadequate. Based on the laboratory pinhole erosion test, we first investigated the impacts of cement-bentonite treatments by using the ground granulated blast-furnace slag (GGBS) as replacement on the erosion characteristics, compared with the original mixtures; the inclusion of GGBS highlighted a potential advantage against water erosion. In addition, we proposed to calculate the erosion percentage and establish the mathematical relationships between the erosion percentage and different regimes, that is, different curing period, erosion time, and sizes of initial holes. Results showed that enough curing period was critical to avoid the increases of hydraulic conductivity in the macrofabric of the barrier; meanwhile, the materials were eroded quickly at the beginning and slowed down with the erosion time, where the enlargement of the initial creaks would be stabilised at some point in time. Moreover, the sizes of initial holes may affect the erosion situation varying from the sample curing periods.


Sign in / Sign up

Export Citation Format

Share Document