scholarly journals Out-plane stability safety factors of CFST arches using inverse finite element reliability method

Author(s):  
Wei Jiang ◽  
Lei Wang ◽  
Yanjun Li
Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2413
Author(s):  
Fenghui Dong ◽  
Feng Shi ◽  
Libin Wang ◽  
Yang Wei ◽  
Kaiqi Zheng

The existing safety analysis methods for the assessment of the aerostatic stability of long-span symmetry cable-stayed bridges have difficulties in meeting the requirements of engineering applications. Based on the finite element method and the inverse reliability theory, an approach for the probabilistic safety analysis of the aerostatic instability of long-span symmetry cable-stayed bridges is proposed here. The probabilistic safety factor of aerostatic instability of long-span symmetry cable-stayed bridges was estimated using the proposed method, with Sutong Bridge as an example. The probabilistic safety factors for the aerostatic instability of Sutong Bridge were calculated using the finite element inverse reliability method, based on the FORM approach. The influences of the mean value and the coefficient of variation of random variables, as well as the iterative step length of finite difference, on the probabilistic safety factors of aerostatic instability of Sutong Bridge were analyzed. The results indicated that it is necessary to consider the uncertainties of random variables in probabilistic safety factor assessments of aerostatic instability in cable-stayed bridges using the proposed method, which could be recommended for the assessment of safety factors involved in the aerostatic instability of long-span symmetry cable-stayed bridges. The randomness of the parameters had an important influence on the probabilistic safety factor of the aerostatic stability of Sutong Bridge. Neglecting the randomness of these parameters may result in instability of the structure.


2018 ◽  
Vol 45 ◽  
pp. 00096
Author(s):  
Arkadiusz Szot

The article concerns aspects of safety in the process of designing continuous polymer liners used to strengthen and seal sewers and drains. The issues of safety coefficients, the variability of basic loadbearing parameters of liners and the problem of sensitivity of analytical solutions describing load-bearing capacity are discussed. The currently used magnitude of safety factors has been verified. The results of an examination on the safety index of liners for strengthening sewers has been presented in the paper. The necessity for the verification of current concepts of liner safety normalisation was herein addressed. A postulation to abandon the analogy of liners for newly constructed pipes was formulated. Calculations using the Hasofer-Lind safety index (First Order Reliability Method) were performed in some cases. A verification and evaluation of the global safety factor for sewer liners were herein carried out.


Author(s):  
B. N. Rao ◽  
S. Rahman

This paper presents a stochastic mesh-free method for probabilistic fracture-mechanics analysis of nonlinear cracked structures. The method involves enriched element-free Galerkin formulation for calculating the J-integral; statistical models of uncertainties in load, material properties, and crack geometry; and the first-order reliability method (FORM) for predicting probabilistic fracture response and reliability of cracked structures. The sensitivity of fracture parameters with respect to crack size, required for probabilistic analysis, is calculated using a virtual crack extension technique. Numerical examples based on mode-I fracture problems have been presented to illustrate the proposed method. The results from sensitivity analysis indicate that the maximum difference between sensitivity of the J-integral calculated using the proposed method and reference solutions obtained by the finite-difference method is about six percent. The results from reliability analysis show that the probability of fracture initiation using the proposed sensitivity and meshless-based FORM are very accurate when compared with either the finite-element-based Monte Carlo simulation or finite-element-based FORM. Since all gradients are calculated analytically, the reliability analysis of cracks can be performed efficiently using meshless methods.


Author(s):  
B. A. Lindley ◽  
P. M. James

Partial Safety Factors (PSFs) are scaling factors which are used to modify the input parameters to a deterministic fracture mechanics assessment in order to consider the effects of variability or uncertainty in the values of the input parameters. BS7910 and SINTAP have adopted the technique, both of which use the First Order Reliability Method (FORM) to derive values for PSFs. The PSFs are tabulated, varying with the target probability of failure, p(F), and the Coefficient of Variance (COV) of the variable. An accurate assessment of p(F) requires a probabilistic method with enough simulations. This has previously been found to be time consuming, due to the large number of simulations required. The PSF method has been seen as a quick way of calculating an approximate, conservative value of p(F). This paper contains a review of the PSF method, conducted using an efficient probabilistic method called the Hybrid probabilistic method. The Hybrid probabilistic method is used to find p(F) at a large number of assessment points, for a range of different PSFs. These p(F) values are compared to those obtained using the PSF method. It is found that the PSF method was usually, and often extremely, conservative. However there are also cases where the PSF method was non-conservative. This result is verified by a hand calculation. Modifications to the PSF method are suggested, including the establishment of a minimum PSF on each variable to reduce non-conservatisms. In light of the existence of efficient probabilistic techniques, the non-conservatisms that have been found in the PSF method, coupled with the impracticality of completely removing these non-conservatisms, it is recommended that a full probabilistic assessment should generally be performed.


Author(s):  
Zhengwei Hu ◽  
Xiaoping Du

System reliability is usually predicted with the assumption that all component states are independent. This assumption may not accurate for systems with outsourced components since their states are strongly dependent and component details may be unknown. The purpose of this study is to develop an accurate system reliability method that can produce complete joint probability density function (PDF) of all the component states, thereby leading to accurate system reliability predictions. The proposed method works for systems whose failures are caused by excessive loading. In addition to the component reliability, system designers also ask for partial safety factors for shared loadings from component suppliers. The information is then sufficient for building a system-level joint PDF. Algorithms are designed for a component supplier to generate partial safety factors. The method enables accurate system reliability predictions without requiring proprietary information from component suppliers.


2012 ◽  
Vol 204-208 ◽  
pp. 689-693
Author(s):  
Yong Quan Li ◽  
Hang Jing ◽  
Qing Huan Wang ◽  
Jun Fu Chen

Principle of calculation of water and earth pressures together by Limit Equilibrium Method (LEM) is introduced, and coupled deformation and seepage analysis is conducted by Finite Element Method (FEM ).The response of one soil slope is simulated during rapid drawdown of water level by LEM and FEM. The results calculated show that seepage upraises the critical slip surfaces, and critical slip surfaces and safety factors by two ways are pretty close. To assure the safety of the slope, the design of anti-slide piles is carried out. Those ways used may provide reference to engineering practice.


2012 ◽  
Vol 170-173 ◽  
pp. 1064-1067
Author(s):  
Shong Loong Chen ◽  
Chun Fu Lin

This study simulates the slope stability at Jiu-Fen, using the limit equilibrium method and the finite element method. The limit equilibrium method can find potential slide surfaces and safety factors rapidly. The advantage of the finite element method is that it utilizes more reasonable soil behavior and boundary conditions. A critical slide surface obtained by the limit equilibrium method can be compared with the displacement vector, stress field and location of plastic zone obtained by the finite element method. Furthermore, we can compare the safety factors produced by the two methods. This study shows that the safety factor from the limit equilibrium method is higher than that from the finite element method. The displacement analysis by the finite element method agrees well with the progressive slope failure. So, if we combine the two methods using monitored data in the field, we can analyze slope stability clearly.


Sign in / Sign up

Export Citation Format

Share Document