scholarly journals Research on the Process of Flexible Blank-holder in Multipoint Forming for Box-shaped Parts

Author(s):  
Jianlei Lin ◽  
Mingzhe Li ◽  
Erhu Qu ◽  
Wenhua Liu
2019 ◽  
Vol 15 (2) ◽  
pp. 70-79
Author(s):  
Tahseen Fadhil Abbas ◽  
Karem Mohsen Younis ◽  
Khalida Kadhim Mansor

  Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed that affect the surface integrity for brass (Cu Zn 65-35) with 0.71 mm thickness. This paper focuses on the development of prediction models for estimation of the product quality. Using Analysis of Variance (ANOVA), surface roughness has been modeled. In the development of this predictive model, blank holder, rubber thickness and forming speed have been considered as model parameters. The mean surface roughness (Ra) is used as response parameter to predict the surface roughness of multipoint forming parts. The data required has been generated, compared and evaluated to the proposed models obtained from experiments. Taguchi algorithm was used to predict the forming parameters (blank holder, rubber thickness and forming speed) on product roughness in forming process of Brass (Cu Zn 65-35) based on orthogonal array of L9 and finally ANOVA was used to find the optimum parameters that have effect on the product quality.


2019 ◽  
Vol 19 (1) ◽  
pp. 92-104
Author(s):  
Tahseen F Abaas ◽  
Karem M Younis ◽  
Khalida K Mansor

Multipoint forming is an engineering concept which means that the working surface of the dieand/or punch is made up of hemispherical ends of individual active elements (called pins), whereeach pin can be independently, vertically displaced using a geometrically reconfigurable die,precious production time is saved because several different products can be made withoutchanging tools. The aim of this work is to present the effect of many parameters (blank Holdertypes, rubber thickness and forming speed) on the reduction of thickness for brass with 0.71 mmthickness. This research is concentrate on the development of predictive models to estimate theminimum deviation in thickness using analysis of variance (ANOVA), minimum thicknessdeviation has been modeled. In the development of this predictive model, blank holder, rubberthickness and forming speed have been considered as model parameters. Arithmetic theminimum thickness deviation used as response parameter to assess the thickness reduction ofMultipoint forming parts. The data required has been generated, compared and evaluated to theproposed models that obtained from experiments. Taguchi algorithm is used to predict theeffect of forming parameters on thickness reduction in forming process of Brass (65-35) basedon orthogonal array of L9. The analysis of variance was used to find the best factors that effecton the thickness deviation, The result of this research is the contribution of blank holder types,rubber thickness and forming speed with respect to minimum thickness deviation is (69.195,18.1 and 12.733) % respectively.


Author(s):  
Paulo Sergio Olivio Filho ◽  
ADRIANO OLIVEIRA ◽  
Émillyn Ferreira Trevisani Olivio

2019 ◽  
Vol 103 (9-12) ◽  
pp. 4507-4517 ◽  
Author(s):  
Yujie Huang ◽  
Zhipeng Lai ◽  
Quanliang Cao ◽  
Xiaotao Han ◽  
Ning Liu ◽  
...  

Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.


Author(s):  
Hossam H. Gharib ◽  
Abdalla S. Wifi ◽  
Maher Y.A. Younan ◽  
Ashraf O. Nassef

Sign in / Sign up

Export Citation Format

Share Document