scholarly journals Formation of Graphene Island on Si (100) Substrate Prepared by Simple-Spray Method: Morphological and Optical Analyses

Author(s):  
R Kurniawan ◽  
J Utomo ◽  
A A Fibriyanti ◽  
S Maryam ◽  
N Mufti ◽  
...  
Keyword(s):  
Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


1994 ◽  
Vol 30 (5) ◽  
pp. 835
Author(s):  
Ki Nam Lee ◽  
Sun Seob Choi ◽  
Yung Il Lee ◽  
Byeong Ho Park ◽  
Jae Ik Kim ◽  
...  

1996 ◽  
Vol 35 (6) ◽  
pp. 887
Author(s):  
Youn Kil Kim ◽  
Seong Tae Hahn ◽  
Jee Hee Baek ◽  
Choon Yul Kim ◽  
Kyung Sub Shinn

2009 ◽  
Vol 23 (12n13) ◽  
pp. 2647-2654 ◽  
Author(s):  
C. STAMPFER ◽  
E. SCHURTENBERGER ◽  
F. MOLITOR ◽  
J. GÜTTINGER ◽  
T. IHN ◽  
...  

We report on electronic transport experiments on a graphene single electron transistor as function of a perpendicular magnetic field. The device, which consists of a graphene island connected to source and drain electrodes via two narrow graphene constrictions is electronically characterized and the device exhibits a characteristic charging energy of approx. 3.5 meV. We investigate the homogeneity of the two graphene "tunnel" barriers connecting the single electron transistor to source and drain contacts as function of laterally applied electric fields, which are also used to electrostatically tune the overall device. Further, we focus on the barrier transparency as function of an applied perpendicular magnetic field and we find an increase of transparency for increasing magnetic field and a source-drain current saturation for magnetic fields exceeding 5 T.


2015 ◽  
Vol 51 (51) ◽  
pp. 10306-10309 ◽  
Author(s):  
Haibo Huang ◽  
Jiangjian Shi ◽  
Songtao Lv ◽  
Dongmei Li ◽  
Yanhong Luo ◽  
...  

Uniform, thickness-controllable and large-size mesoscopic TiO2 films have been prepared by a spray method by using commercial P25 nanoparticles, yielding high efficiency for perovskite solar cells.


2021 ◽  
Vol 886 ◽  
pp. 168-174
Author(s):  
Mohanad N. Al-Shroofy ◽  
Hanna A. Al-Kaisy ◽  
Rabab Chalaby

Powder spray coating was used for many applications such as paint decoration and protection against corrosive environments. The electrostatic spray method is used to lower the manufacturing cost and the environmental effect during the production process. It is done by electrostatic device and spray gun to create a layer on the substrate to play a protective role. Different dry powders were mixed to form a composite mixture consisted of Al2O3 and SiC or ZrSiO4 with Al powder as a binder. The powders mixture was deposited by electrostatic spray technique with a high voltage of 15 kV on a low carbon steel substrate of (40 x 10 x 4) mm in dimensions. Two groups of mixtures were used to form the coating layers. Powders of Al2O3 with (20 and 40) weight percent (wt%) of SiC as the first group and (20 and 40) wt% of ZrSiO4 as the second group were used. 5 wt% of Al powder was added as a binder, and the samples were heat treated at 900 C° for 2 hours. A detailed characterization of the composite coating layers was performed using XRD, SEM, and EDX, as well as, micro-hardness measurements. The obtained surface composite layers were smooth and having good particle distribution which leads to enhance roughness values (Ra). Furthermore, the hardness increased with increasing the amount of carbide and zirconia, and the obtained layers show no presence of defects or cracks.


Sign in / Sign up

Export Citation Format

Share Document