scholarly journals Effects of dicumyl peroxide on cell formation of biopolymer blend-activated carbon composite foams

Author(s):  
D Aussawasathien ◽  
K Ketkul ◽  
K Hrimchum ◽  
P Threepopnatkul
2017 ◽  
Author(s):  
Darunee Aussawasathien ◽  
Kotchaporn Jariyakun ◽  
Thongchai Pomrawan ◽  
Kittipong Hrimchum ◽  
Rungsima Yeetsorn ◽  
...  

2017 ◽  
Vol 751 ◽  
pp. 344-349 ◽  
Author(s):  
Kittimasak Ketkul ◽  
Poonsub Threepopnatkul ◽  
Darunee Aussawasathien ◽  
Kittipong Hrimchum

Polymer blends of poly (lactic acid) (PLA) and polybutylene succinate (PBS) containing activated carbon (AC) were foamed by using Azodicarbonamide (ADC) through an extrusion process. The composite foams containing 5 phr of AC had lower density than those without AC loading for PLA:PBS ratios of 90:10, 80:20, 70:30, and 60:40. The incident of higher void fraction was the consequences of more foaming nucleation centers which were induced by adding AC in the composite foam. Maximum reduction of density by 50% with the void fraction of 50% was achieved when both ADC and AC were applied at 5 phr with the PLA:PBS ratio of 80:20. The addition of AC in composite foams enhanced the crystallization in PBS phase but had no effects on PLA crystallinity. The thermal stability of composite foams with and without AC dosages for each PLA:PBS proportion was slightly changed. For PLA-PBS blend foams, the more PLA loading there was the more tensile strength and modulus there would be. For PLA-PBS-AC composite foams, AC could improve the modulus and tensile strength of composite foams in PBS-rich samples whereas no effect on PLA-rich samples.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1207
Author(s):  
Aled D. Roberts ◽  
Jet-Sing M. Lee ◽  
Adrián Magaz ◽  
Martin W. Smith ◽  
Michael Dennis ◽  
...  

Fabrics comprised of porous fibres could provide effective passive protection against chemical and biological (CB) threats whilst maintaining high air permeability (breathability). Here, we fabricate hierarchically porous fibres consisting of regenerated silk fibroin (RSF) and activated-carbon (AC) prepared through two fibre spinning techniques in combination with ice-templating—namely cryogenic solution blow spinning (Cryo-SBS) and cryogenic wet-spinning (Cryo-WS). The Cryo-WS RSF fibres had exceptionally small macropores (as low as 0.1 µm) and high specific surface areas (SSAs) of up to 79 m2·g−1. The incorporation of AC could further increase the SSA to 210 m2·g−1 (25 wt.% loading) whilst also increasing adsorption capacity for volatile organic compounds (VOCs).


2015 ◽  
Vol 180 ◽  
pp. 22-28 ◽  
Author(s):  
Mohammed A. Ajeel ◽  
Mohamed Kheireddine Aroua ◽  
Wan Mohd Ashri Wan Daud

2015 ◽  
Vol 659 ◽  
pp. 304-309
Author(s):  
Khemmakorn Gomonsirisuk ◽  
Thanakorn Wasanapiarnpong

Organic contaminated wastes water from petrochemical industries can be removed by adsorbent and photocatalyst. In this work, the degradation rate of phenol have been studied at different ratios of activated carbon/NaA zeolite composite materials coated with TiO2 photocatalyst which are easily to be fabricated into tubular shape by extrusion method. In addition, the foam-inserted composite can be floated on the surface of waste water for the higher phocatalyst activity. While the composite is the low cost adsorbent with high absorption and high ion exchange properties. In order to optimize the efficiency of material, the various ratios of activated carbon/NaA zeolite (3:1, 1:1 and 1:3) and amount of coated TiO2 on the specimen’s surface was studied by UV/Vis spectrophotometer which related to phenol concentration. Moreover the various amount of phenolic resins (10, 20, 30, 40 and 50 wt%) at different reduction firing temperatures (600 and 650 °C) with soaking time of 1, 2 and 3 hours affected to the compressive strength of samples. For the characterization, XRD is used to characterize the phase and SEM is used to provide the morphology of the prepared composite materials.


2005 ◽  
Vol 50 (23) ◽  
pp. 2788-2790 ◽  
Author(s):  
Ru Jia ◽  
Liu Huijuan ◽  
Qu Jiuhui ◽  
Wang Aimin ◽  
Dai Ruihua

Sign in / Sign up

Export Citation Format

Share Document