Poly(Lactic Acid)-Polybutylene Succinate-Activated Carbon Composite Foams

2017 ◽  
Vol 751 ◽  
pp. 344-349 ◽  
Author(s):  
Kittimasak Ketkul ◽  
Poonsub Threepopnatkul ◽  
Darunee Aussawasathien ◽  
Kittipong Hrimchum

Polymer blends of poly (lactic acid) (PLA) and polybutylene succinate (PBS) containing activated carbon (AC) were foamed by using Azodicarbonamide (ADC) through an extrusion process. The composite foams containing 5 phr of AC had lower density than those without AC loading for PLA:PBS ratios of 90:10, 80:20, 70:30, and 60:40. The incident of higher void fraction was the consequences of more foaming nucleation centers which were induced by adding AC in the composite foam. Maximum reduction of density by 50% with the void fraction of 50% was achieved when both ADC and AC were applied at 5 phr with the PLA:PBS ratio of 80:20. The addition of AC in composite foams enhanced the crystallization in PBS phase but had no effects on PLA crystallinity. The thermal stability of composite foams with and without AC dosages for each PLA:PBS proportion was slightly changed. For PLA-PBS blend foams, the more PLA loading there was the more tensile strength and modulus there would be. For PLA-PBS-AC composite foams, AC could improve the modulus and tensile strength of composite foams in PBS-rich samples whereas no effect on PLA-rich samples.

2019 ◽  
Vol 798 ◽  
pp. 322-330
Author(s):  
Kittipong Hrimchum ◽  
Darunee Aussawasathien ◽  
Todsapol Kajornprai

Poly (lactic acid) (PLA)-poly (butylene succinate) (PBS)-activated carbon (AC) composites were foamed via an injection molding process. Azodicarbonamide (ADC) was used as a chemical blowing agent. The effect of PLA/PBS ratios (0/100, 10/90, 20/80, 30/70, 40/60, 50/50 wt% and vice versa) on the cell formation and properties of composite foams such as cellular structure, foam density (ρf), void fraction (Vf), cell density, melt flow index (MFI), thermal and mechanical properties and crystallinity were investigated. At same ADC and AC loadings (5 phr), PBS acted as nucleating sites for cell generation and expansion at low contents ( 40 wt%). However, the cell size had a tendency to decrease at high PBS concentrations (> 40 wt%). The cell density of composite foams was somewhat constant at PLA/PBS ratios up to 60/40 wt% and then continuously increased as the PBS dosage was higher than 40 wt%. The maximum reduction of foam density with the void fraction of 20% was obtained at the PLA/PBS ratio of 60/40. The melt viscosity of composite foams increased with the increase of PBS loadings. The tensile strength and Young’s modulus of composite foams decreased while the elongation at break and impact strength increased as the proportion of PBS increased. The cold crystallization temperature (Tcc) of PLA in the composite foam tended to decrease with the reduction of PLA contents while the melting temperatures (Tm) of PLA in composite foams fluctuated without any trend compared with those of the unfoamed PLA. The Tcc of PLA in composite foams could not be detected when the content of PBS was higher than 40 wt%. The crystallization temperature (Tc) and Tm of PBS in composite foams was almost unchanged for each PLA/PBS proportion compared with those of the unfoamed PBS. The crystallinity (Xc) of PLA in composite foams increased compared with the unfoamed PLA at PBS contents of 0-20 wt% due to the nucleating effect of PBS and AC. The Xc of PLA (at PBS > 20 wt%) and PBS in composite foams decreased with the reduction of each polymer.


2019 ◽  
Author(s):  
Darunee Aussawasathien ◽  
Kittimasak Ketkul ◽  
Kittipong Hrimchum ◽  
Poonsub Threepopnatkul

2019 ◽  
Vol 821 ◽  
pp. 89-95
Author(s):  
Wanasorn Somphol ◽  
Thipjak Na Lampang ◽  
Paweena Prapainainar ◽  
Pongdhorn Sae-Oui ◽  
Surapich Loykulnant ◽  
...  

Poly (lactic acid) or PLA was reinforced by nanocellulose and polyethylene glycol (PEG), which were introduced into PLA matrix from 0 to 3 wt.% to enhance compatibility and strength of the PLA. The nanocellulose was prepared by TEMPO-mediated oxidation from microcrystalline cellulose (MCC) powder and characterized by TEM, AFM, and XRD to reveal rod-like shaped nanocellulose with nanosized dimensions, high aspect ratio and high crystallinity. Films of nanocellulose/PEG/PLA nanocomposites were prepared by solvent casting method to evaluate the mechanical performance. It was found that the addition of PEG in nanocellulose-containing PLA films resulted in an increase in tensile modulus with only 1 wt% of PEG, where higher PEG concentrations negatively impacted the tensile strength. Furthermore, the tensile strength and modulus of nanocellulose/PEG/PLA nanocomposites were higher than the PLA/PEG composites due to the existence of nanocellulose chains. Visual traces of crazing were detailed to describe the deformation mechanism.


2021 ◽  
Vol 22 (6) ◽  
pp. 3150
Author(s):  
Anna Masek ◽  
Stefan Cichosz ◽  
Małgorzata Piotrowska

The study aimed to prepare sustainable and degradable elastic blends of epoxidized natural rubber (ENR) with poly(lactic acid) (PLA) that were reinforced with flax fiber (FF) and montmorillonite (MMT), simultaneously filling the gap in the literature regarding the PLA-containing polymer blends filled with natural additives. The performed study reveals that FF incorporation into ENR/PLA blend may cause a significant improvement in tensile strength from (10 ± 1) MPa for the reference material to (19 ± 2) MPa for the fibers-filled blend. Additionally, it was found that MMT employment in the role of the filler might contribute to ENR/PLA plasticization and considerably promote the blend elongation up to 600%. This proves the successful creation of the unique and eco-friendly PLA-containing polymer blend exhibiting high elasticity. Moreover, thanks to the performed accelerated thermo-oxidative and ultraviolet (UV) aging, it was established that MMT incorporation may delay the degradation of ENR/PLA blends under the abovementioned conditions. Additionally, mold tests revealed that plant-derived fiber addition might highly enhance the ENR/PLA blend’s biodeterioration potential enabling faster and more efficient growth of microorganisms. Therefore, materials presented in this research may become competitive and eco-friendly alternatives to commonly utilized petro-based polymeric products.


Fibers ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 50
Author(s):  
Warren J. Grigsby ◽  
Arpit Puri ◽  
Marc Gaugler ◽  
Jan Lüedtke ◽  
Andreas Krause

This study reports on the use of poly(lactic acid) (PLA) as a renewable thermoplastic adhesive for laminated panels using birch, spruce, and pine veneers. Consolidated panels were prepared from veneer and PLA foils by hot-pressing from 140 to 180 °C to achieve minimum bondline temperatures. Evaluation of panel properties revealed that the PLA-bonded panels met minimum tensile strength and internal bond strength performance criteria. However, the adhesion interface which developed within individual bondlines varied with distinctions between hardwood and softwood species and PLA grades. Birch samples developed greater bondline strength with a higher pressing temperature using semi-crystalline PLA, whereas higher temperatures produced a poorer performance with the use of amorphous PLA. Panels formed with spruce or pine veneers had lower bondline performance and were also similarly distinguished by their pressing temperature and PLA grade. Furthermore, the potential for PLA-bonded laminated panels was demonstrated by cold water soak testing. Samples exhibiting relatively greater bondline adhesion had wet tensile strength values comparable to those tested in dry state. Our study outcomes suggest the potential for PLA bonding of veneers and panel overlays with the added benefits of being renewable and a no added formaldehyde system.


2018 ◽  
Vol 33 (3) ◽  
pp. 289-304 ◽  
Author(s):  
Kuhananthan Nanthakumar ◽  
Chan Ming Yeng ◽  
Koay Seong Chun

This research covers the preparation of poly(lactic acid) (PLA)/sugarcane leaves fibre (SLF) biofilms via a solvent-casting method. The results showed that the tensile strength and Young’s modulus of PLA/SLF biofilms increased with the increasing of SLF content. Nevertheless, the elongation at break showed an opposite trend as compared to tensile strength and Young’s modulus of biofilms. Moreover, water absorption properties of PLA/SLF biofilms increased with the increasing of SLF content. In contrast, the tensile strength and Young’s modulus of biofilms were enhanced after bleaching treatment with hydrogen peroxide on SLF, but the elongation at break and water absorption properties of bleached biofilms were reduced due to the improvement of filler–matrix adhesion in biofilms. The tensile and water properties were further discussed using B-factor and Fick’s law, respectively. Furthermore, the functional groups of unbleached and bleached SLF were characterized by Fourier transform infrared analysis.


2013 ◽  
Vol 647 ◽  
pp. 798-801 ◽  
Author(s):  
Wen Can Xi ◽  
Hong Mei Kang ◽  
Hua Li ◽  
He Zhou Liu ◽  
Wei Jie Wang ◽  
...  

Binary blendscomposed of polyhrdroxyalkanoates (P34HB) and poly(lactic acid) (PLA) with various P34HB weight percentage were preparedby extrusion and compressing molding.Both the thermo-oxidative agingat 80°Cand the hydrothermal aging at 80°C with 80% humidity were performed for 300 h for the P34HB/PLA blends respectively.The mechanical properties of tensile strength and elongation-at-breakrevealed that P34HB/PLA blends possessedthe balanced mechanical properties between P34HB and PLA,theblends with higher ratio of P34HBshowed thedeteriorative mechanical behavior in the aging environment faster than thoseblends with lower ratio of P34HB.


Sign in / Sign up

Export Citation Format

Share Document