scholarly journals Optimization design method of PRHRS air heat exchanger based on natural circulation characteristics

Author(s):  
Yandong Wang ◽  
Yongdong Chen ◽  
Xiaohong Wu ◽  
Zhiqiang Yu ◽  
Pei Cheng
Author(s):  
T. Q. Ma ◽  
K. T. Ooi ◽  
T. N. Wong

This paper presents simulation results on the geometrical optimization design of bare tube heat exchangers. By linking a mathematical model with an optimization alogorithm, it is possible to predict which combination of five geometrical variables would produce a given coil capacity of a heat exchanger, the minimum core volume size operating at the minimum pressure drop. A constrained multivariable direct search technique is used in which the five geometrical variables and a mixture of five explicit and implicit constraints are accommodated. Using this design method, three typical sizes of bare tube optimization cases have been studied. The simulation results predict significant performance improvements for heat exchanger design. The range of tube outer diameter in this optimization study is from 4.9 to 9.0 mm.


2021 ◽  
Vol 261 ◽  
pp. 01030
Author(s):  
Shuai Pu ◽  
Wei Huang

In this paper, Optimization design of heat pipe heat exchanger (HPHX) is processed utilizing the Response Surface Methodology (RSM). The response surface model was built by regressive analysis using Latin hypercube experimental design method and numerical simulation. Through response surface analysis, it is found that the two input variables affecting the performance of HPHX are the heat pipe pitch and the Inlet and outlet distance. Moreover, the maximum value of the overall performance factor on the response surface is searched using genetic algorithm, and the optimal values of four input variables are obtained.


2005 ◽  
Vol 42 (5) ◽  
pp. 1375-1375 ◽  
Author(s):  
Shinkyu Jeong ◽  
Mitsuhiro Murayama ◽  
Kazuomi Yamamoto

2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


2012 ◽  
Vol 629 ◽  
pp. 699-703
Author(s):  
Chun Sheng Guo ◽  
Wen Jing Du ◽  
Lin Cheng

The entransy loss minimization approach for the heat exchanger optimization design was established by Guo Z Y; the study based Guo Z Y’s works, found relationship between the entransy loss uniformity and the heat exchanger performance and the expression of the local entransy loss rate for heat convection was derived, numerical results of the heat transfer in a chevron plate heat exchanger and helix baffle heat exchanger show that the larger entransy loss uniformity factor appear in about Re=2000 and the entransy loss uniformity factor of chevron plate heat exchanges higher than helix baffle one.


Sign in / Sign up

Export Citation Format

Share Document