scholarly journals Nonlinear Rolling Motion of Damaged Warship Based on Cell Mapping Method

Author(s):  
Hui Liu ◽  
Zhi-hui Li ◽  
Xiang-jun Wu ◽  
Jin-yun Pu
2021 ◽  
Vol 31 (6) ◽  
pp. 063132
Author(s):  
Minjuan Yuan ◽  
Liang Wang ◽  
Yiyu Jiao ◽  
Wei Xu

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Wang ◽  
Heng Cao ◽  
JinLin Jiang

An indicator of a passive biped walker’s global stability is its domain of attraction, which is usually estimated by the simple cell mapping method. It needs to calculate a large number of cells’ Poincare mapping result in the estimating process. However, the Poincare mapping is usually computationally expensive and time-consuming due to the complex dynamical equation of the passive biped walker. How to estimate the domain of attraction efficiently and reliably is a problem to be solved. Based on the simple cell mapping method, an improved method is proposed to solve it. The proposed method uses the multiple iteration algorithm to calculate a stable domain of attraction and effectively decreases the total number of Poincare mappings. Through the simulation of the simplest passive biped walker, the improved method can obtain the same domain of attraction as that calculated using the simple cell mapping method and reduce calculation time significantly. Furthermore, this improved method not only proposes a way of rapid estimating the domain of attraction, but also provides a feasible tool for selecting the domain of interest and its discretization level.


2018 ◽  
Vol 28 (02) ◽  
pp. 1830003 ◽  
Author(s):  
Xiao-Ming Liu ◽  
Jun Jiang ◽  
Ling Hong ◽  
Dafeng Tang

In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.


1986 ◽  
Vol 53 (3) ◽  
pp. 702-710 ◽  
Author(s):  
H. M. Chiu ◽  
C. S. Hsu

In this second part of the two-part paper we demonstrate the viability of the compatible simple and generalized cell mapping method by applying it to various deterministic and stochastic problems. First we consider deterministic problems with non-chaotic responses. For this class of problems we show how system responses and domains of attraction can be obtained by a refining procedure of the present method. Then, we consider stochastic problems with stochasticity lying in system parameters or excitation. Next, deterministic systems with chaotic responses are considered. By the present method, finding the statistical responses of such systems under random excitation also presents no difficulties. Some of the systems studied here are well-known. New results are, however, also obtained. These are results on Duffing systems with a stochastic coefficient, the global results of a Duffing system shown in Section 4, the results on strongly nonlinear Duffing systems under random excitations reported in Section 7.2, and the strange attractor results for systems subjected to random excitations.


Sign in / Sign up

Export Citation Format

Share Document