scholarly journals The Taguchi orthogonal analysis of Ti6Al4V titanium alloy chip morphology in micro-milling

Author(s):  
X Zhang ◽  
X D Pan ◽  
G L Wang
Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


Author(s):  
Emel Kuram ◽  
Babur Ozcelik

This study focused on the optimization of micro-milling parameters for two extensively used aerospace materials (titanium and nickel-based superalloy). The experiments were planned using Taguchi experimental design method, and the influences of spindle speed, feed rate and depth of cut on machining outputs, namely, tool wear, surface roughness and cutting forces, were determined. Tool wear, surface roughness and cutting forces measured in micro-milling of Ti6Al4V titanium alloy and Inconel 718 workpiece materials were optimized by employing Taguchi’s signal-to-noise ratio. The percentage contribution of micro-milling parameters, namely, spindle speed, feed rate and depth of cut, on tool wear, surface roughness and cutting forces was indicated by analysis of variance. The regression models identifying the relationship between the input variables and the output responses were also fitted using experimental data to predict output responses without conducting the experiments. Efficiency of regression models was determined using correlation coefficients, and the predicted values were compared with experimental results. From results, it was concluded that the established regression models could be employed for predicting tool wear, surface roughness and cutting forces in micro-milling of Ti6Al4V titanium alloy and Inconel 718 workpiece materials.


2021 ◽  
Vol 70 ◽  
pp. 300-306
Author(s):  
Shuai Wang ◽  
Yang Li ◽  
Yue Yang ◽  
Sunusi Marwana Manladan ◽  
Zhen Luo

Metals ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 1148-1162 ◽  
Author(s):  
Kamel Moussaoui ◽  
Michel Mousseigne ◽  
Johanna Senatore ◽  
Remy Chieragatti ◽  
Pascal Lamesle

2016 ◽  
Vol 687 ◽  
pp. 236-242 ◽  
Author(s):  
Piotr Lacki ◽  
Judyta Różycka ◽  
Marcin Rogoziński

This requires the use of additional reinforcement in order to prevent excessive or permanent deformation of PVC windows. In the paper particular attention was devoted to space located in a corrosive environment exposed to chemical agents. For this purpose, proposed to change the previously used steel profiles reinforcements made of Ti6Al4V titanium alloy corrosion-resistant in the air, at sea and many types of industrial atmosphere. Analysis of the thermal insulation properties of PVC windows with additional reinforcement of profile Ti6Al4V titanium alloy was performed. PVC window set in a layer of thermal insulation was analyzed. Research was conducted using Finite Element Analysis. Numerical models and thermal calculations were made in the program ADINA, assuming appropriate material parameters. The constant internal temperature of 20 ̊ and an outer-20 ̊ was assumed. The course of temperature distribution in baffle in time 24 hours and graphs of characteristic points was obtained. The time of in which followed the steady flow of heat, as well as the course of isotherm of characteristic temperature in the baffle was determined. On the basis of numerical analysis obtained vector distribution of heat flux q [W/m2] and was determined heat transfer coefficients U [W/m2K] for the whole window with titanium reinforcement . All results were compared with the model of PVC windows reinforced with steel profile.


Sign in / Sign up

Export Citation Format

Share Document