scholarly journals Research of parameters of hydrostatic transmission with axial flow divider for cases of multi-drive vehicle maneuvering

Author(s):  
A M Belousov ◽  
D L Karelin ◽  
A V Boldyrev ◽  
S V Boldyrev
1994 ◽  
Vol 116 (3) ◽  
pp. 318-323 ◽  
Author(s):  
Yao Zhao ◽  
Baruch B. Lieber

A model symmetric bifurcation was employed to simulate steady expiratory flow in the upper part of the human central airways. A two color, two component laser Doppler anemometer was used to measure both the axial flow and the secondary flow at three different Reynolds numbers of 518, 1036, and 2089, corresponding to Dean numbers of 98, 196, and 395. The test section is a symmetric bifurcation of constant cross-sectional area with a branching angle of 70 degrees. The flow rate into the two daughter branches was about the same. Results show that in the junction plane, velocity profiles in the daughter branches are skewed towards the inner walls. In the parent tube, just downstream of the flow divider, the velocity profile is biconcave with a dip at the center but this is rapidly transformed into a velocity peak. In a plane transverse to the bifurcation plane, parabolic velocity distribution was conserved through the daughter branches. In the parent tube, the transverse profiles became flat downstream of the flow divider and developed a defect at the center further downsteam towards the end of the parent tube part of the bifurcation. The velocity defect was confined to a small region in the vicinity of the centerline. Helical motion typified by symmetric vortices was observed in the daughter branches. In the parent tube, a set of four vortices induced by the turning of the flow was observed.


1996 ◽  
Vol 118 (1) ◽  
pp. 90-96 ◽  
Author(s):  
C. C. M. Rindt ◽  
A. A. v. Steenhoven

In the present study, finite element calculations are performed of blood flow in the carotid artery bifurcation under physiological flow conditions. The numerical results are compared in detail with laser-Doppler velocity measurements carried out in a perspex model. It may be concluded that the numerical model as presented here is well capable in predicting axial and secondary flow of incompressible Newtonian fluids in rigid-walled three-dimensional geometries. With regard to the flow phenomena occurring, a large region with reversed axial flow is found in the carotid sinus opposite to the flow divider. This region starts to grow at peak systole, has its maximal shape at minimal flow rate and totally disappears at the start of the acceleration phase. C-shaped axial velocity contours are formed in the deceleration phase, which are highly influenced by secondary flows. These latter flows are mainly induced by centrifugal forces, flow branching, and tapering of the carotid sinus. Lowering the sinus angle, the angle between the main branch and the carotid sinus, results in a smaller region with reversed axial flow.


2012 ◽  
Vol 60 (S 01) ◽  
Author(s):  
P Ganslmeier ◽  
HJ Schneider ◽  
A Keyser ◽  
M Michl ◽  
M Foltan ◽  
...  

Waterlines ◽  
1989 ◽  
Vol 8 (2) ◽  
pp. 10-12 ◽  
Author(s):  
Stickney ◽  
Salazar
Keyword(s):  

2017 ◽  
Vol 137 (1) ◽  
pp. 30-35
Author(s):  
Hiroaki Narita ◽  
Makoto Saruwatari ◽  
Jun Matsui ◽  
Yasutaka Fujimoto

Sign in / Sign up

Export Citation Format

Share Document