scholarly journals Effect of Water-Cement Ratio on Mix Design and Mechanical Strength of Copper Slag Aggregate Concrete

Author(s):  
Swetapadma Panda ◽  
Pradip Sarkar ◽  
Robin Davis
2014 ◽  
Vol 541-542 ◽  
pp. 273-276
Author(s):  
Xiao Nan Dong ◽  
Xi Chen ◽  
Ling Chao Lu ◽  
Shuai Yang

The effects of two admixtures content i.e. water reducer, cellulose ether and water-cement ratio on mechanical strength and dry density of cement-based lightweight thermal insulation board are studied. The result indicates that the water-cement ratio is the important influential factor, which is easier to get good workability. And based on the mechanical strength and dry density, the best range of water reducer content and cellulose ether content are 0.3%-0.6% and 0.4%-0.6% respectively.


2018 ◽  
Vol 8 (8) ◽  
pp. 1324 ◽  
Author(s):  
How-Ji Chen ◽  
Chung-Hao Wu

Expanded shale lightweight aggregates, as the coarse aggregates, were used to produce lightweight aggregate concrete (LWAC) in this research. At the fixed water-cement ratio, paste quantity, and aggregate volume, the effects of various aggregate gradations on the engineering properties of LWAC were investigated. Comparisons to normal-weight concrete (NWC) made under the same conditions were carried out. From the experimental results, using normal weight aggregates that follow the specification requirements (standard gradation) obtained similar NWC compressive strength to that using uniform-sized aggregates. However, the compressive strength of LWAC made using small uniform-sized aggregates was superior to that made from standard-grade aggregates. This is especially conspicuous under the low water-cement ratio. Even though the workability was affected, this problem could be overcome with developed chemical additive technology. The durability properties of concrete were approximately equal. Therefore, it is suggested that the aggregate gradation requirement of LWAC should be distinct from that of NWC. In high strength LWAC proportioning, following the standard gradation suggested by American Society for Testing and Materials (ASTM) is optional.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1899-1902
Author(s):  
Yan Kun Zhang ◽  
Yu Cheng Wang ◽  
Xiao Long Wu

In this article, the flexural strength of combined aggregate concrete with four kinds of water-cement ratio (0.3,0.35.0.4, 0.45), and six ceramsite replace rate (0%, 20%, 40%, 60%, 80%, 60%) are studied with comprehensive test method. Experiment shows that the ceramsite replace rate of combined aggregate has greater influence on the flexural strength than the water-cement ratio. The flexural strength increases with the increasing of compressive strength, and the formula of the flexural strength and compressive strength of combined aggregate concrete is given.


Sign in / Sign up

Export Citation Format

Share Document