Research in the Effect of Water-Cement Ratio on Strength of Fine Concretes with a Filler of Granulated Blast Furnace Slag

2018 ◽  
Vol 760 (6) ◽  
pp. 20-23
Author(s):  
N.V. KUZNETSOVA ◽  
◽  
А.I. DUBROVIN ◽  
V.A. EZERSKIY ◽  
◽  
...  
2012 ◽  
Vol 575 ◽  
pp. 100-103 ◽  
Author(s):  
Dong Sheng Shi ◽  
Ping Han ◽  
Zheng Ma ◽  
Jing Bo Wang

In this paper, the experiment about compressive strength of concrete using granulated blast furnace slag as fine aggregate was introduced. In this experiment, granulated blast furnace slag fine aggregates that were produced by two different steel factory and natural river sands that came from two different producing area were been used, and compressive strength of concrete for testing were four levels from ordinary strength level to high strength level. As results, the compressive strength of concrete that used granulated blast furnace slag as fine aggregate increase with increasing of concrete age as good as the concrete used nature river sand. At the early age of 3 days and 7days, whether water-cement ratio, the compressive strength of concrete using slag fine aggregate is always lower than concrete using river sand. At the long age of 91 days, the compressive strength of concrete using slag fine aggregate exceed the concrete using river sand when water-cement ratio was greater than 30%. The compressive strength of concrete using granulated blast furnace slag as fine aggregate can exceed 80N/mm2, the granulated blast furnace slag can be used in high-strength concrete.


2017 ◽  
Vol 266 ◽  
pp. 272-277 ◽  
Author(s):  
Jul Endawati

The use of industrial by-products could provide a feasible solutions for the construction industry to reduce the strain on supply of natural aggregate as well as achieving the concept of environmentally friendly binder material by replacing part of Portland cement. This paper reports the results of an experimental study, mainly on the permeability and porosity characteristic of pervious concrete developed by substituting 26% Portland cement with air-cooled blast furnace slag and replacing part of natural coarse aggregate with granular blast furnace slag of different aggregate size and different water/cement ratio. The pervious concrete with lower water cement ratio and 25% GBFS affected either the porosity or the compressive strength of the pervious concrete. As expected, the porosity increased in pervious concrete with bigger aggregate size, but decreased when the smaller aggregate size was used. Partial substitution of coarse aggregate with granular GBFS of the same gradation size did not affect the permeability coefficient. Specimens developed using water cement ratio of 0.34 and coarser aggregate size tend to have a greater water permebility compared with those of 0.3 water/cement ratio.


2015 ◽  
Vol 55 (11) ◽  
pp. 2499-2508 ◽  
Author(s):  
Hiroyuki Tobo ◽  
Keiji Watanabe ◽  
Michihiro Kuwayama ◽  
Shigeaki Goto ◽  
Hiroki Goto ◽  
...  

2014 ◽  
Vol 100 (6) ◽  
pp. 799-808
Author(s):  
Hiroyuki Tobo ◽  
Keiji Watanabe ◽  
Michihiro Kuwayama ◽  
Shigeaki Goto ◽  
Hiroki Goto ◽  
...  

2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Author(s):  
Jean Noël Yankwa Djobo ◽  
Dietmar Stephan

AbstractThis work aimed to evaluate the role of the addition of blast furnace slag for the formation of reaction products and the strength development of volcanic ash-based phosphate geopolymer. Volcanic ash was replaced by 4 and 6 wt% of ground granulated blast furnace slag to accelerate the reaction kinetics. Then, the influence of boric acid for controlling the setting and kinetics reactions was also evaluated. The results demonstrated that the competition between the dissolution of boric acid and volcanic ash-slag particles is the main process controlling the setting and kinetics reaction. The addition of slag has significantly accelerated the initial and final setting times, whereas the addition of boric acid was beneficial for delaying the setting times. Consequently, it also enhanced the flowability of the paste. The compressive strength increased significantly with the addition of slag, and the optimum replaced rate was 4 wt% which resulted in 28 d strength of 27 MPa. Beyond that percentage, the strength was reduced because of the flash setting of the binder which does not allow a subsequent dissolution of the particles and their precipitation. The binders formed with the addition of slag and/or boric acid are beneficial for the improvement of the water stability of the volcanic ash-based phosphate geopolymer.


2021 ◽  
Vol 276 ◽  
pp. 122218
Author(s):  
Sangram K. Sahoo ◽  
Benu G. Mohapatra ◽  
Sanjaya K. Patro ◽  
Prasanna K. Acharya

Sign in / Sign up

Export Citation Format

Share Document