scholarly journals The effect of water cement ratio (WCR) on compressive strength of interlocking bricks with mix design variations

Author(s):  
N Malahayati ◽  
Y Hayati ◽  
Mahlil ◽  
D Sundary ◽  
F Maulina
2020 ◽  
Vol 862 ◽  
pp. 135-139
Author(s):  
Dhabit Zahin Alias Tudin ◽  
Ahmad Nurfaidhi Rizalman

In this study, crumb rubber was used to partially replaced fine aggregate in mortar mixture by 5, 10, 15 and 20 volume percentage (vol%) with untreated and NaOH-treated crumb rubber. There were three (3) different water-cement ratio used which are 0.45, 0.50 and 0.55. Thus, the total number of mixtures was 27. The mortars were tested for flowability, compressive strength, flexural strength and density. Based on the results, higher water cement ratio and percentage of crumb rubber replacement increased the flowability but lowered the density, compressive strength and flexural strength of the rubberized mortar. It was also discovered that the significant effect of water-cement ratio on the fresh and hardened properties of the rubberized mortar was due to the water content in the mixture. Meanwhile, the use of NaOH as treatment to crumb rubber improved the flowability, compressive strength and flexural strength of the rubberized mortar.


2018 ◽  
Vol 150 ◽  
pp. 03010
Author(s):  
Noorwirdawati Ali ◽  
Nor Fazlin Mohd Yusup ◽  
Faisal Sheikh Khalid ◽  
Shahiron Shahidan ◽  
Siti Radziah Abdullah

Waste disposal can contribute to the problem of environmental pollution. Most of the waste material is plastic based, because the nature of difficult of plastic degradable by itself. In order to overcome the problem, many study has been conducted on the reuse of plastic material into various field such as civil engineering and construction. In this study, municipal solid waste (MSW) in the form of High Density Polyethylene (HDPE) plastic was used to replace sand in cement sand brick production. The HDPE used in this study was obtained from a recycle factory at Nilai, Negeri Sembilan. 3% of HDPE replacement was applied in this study, with the cement-sand mix design of 1:6 and water-cement ratio 0.35, 0.40, 0.45 and 0.50 respectively. All specimens were tested for compressive strength and water absorption at 7 and 28 days. The density of the bricks was also recorded. The finding show that brick with 3% HDPE content and 0.45 of water-cement ratio at 28 days of age curing show the highest compressive strength, which is 19.5N/mm2 compared to the control specimen of 14.4 N/mm2.


2013 ◽  
Vol 701 ◽  
pp. 12-16 ◽  
Author(s):  
Mohd Irwan Juki ◽  
Khairunnisa Muhamad ◽  
Mahamad Mohd Khairil Annas ◽  
Koh Heng Boon ◽  
Norzila Othman ◽  
...  

This paper describes the experimental investigation to develop the concrete mix design Nomograph for concrete containing PET as fine aggregate. The physical and mechanical properties were determined by using mix proportion containing 25%, 50% and 75% of PET with water cement ratio (w/c) 0.45, 0.55 and 0.65. The data obtained showed that the inclusion of PET aggregate reduce the strength performances of concrete. All the data obtained were combined into one single graph to develop a preliminary mix design nomograph for PET concrete. The nomograph consist of ; relationship between compressive strength and water cement ratio; relationship between splitting tensile strength water cement ratio; relationship between splitting tensile strength and PET percentage and relationship between compressive strength and PET percentage. The mix design nomograph can be used to assists in selecting the proper mix proportion parameters based on the criteria required.


2010 ◽  
Vol 168-170 ◽  
pp. 2116-2120
Author(s):  
Jian Chao Dou ◽  
Jian Sen Yang

The effect of water-cement ratio, air content, silica fume and sand ratio of concrete on the coefficient of linear expansion(CLE) was studied by orthogonal experiment. The results show that under a certain amount of cement material, CLE of concrete increase as the water-cement ratio increases and the effect of water-cement ratio on CLE of concrete is remarkable; with the increase of blending ratio of silica fume, the CLE of concrete increases; the CLE of concrete reduces with 3.5% air content in concrete, but rebound with 6% air content in concrete; with the sand rate increases, CLE of concrete increases; CLE per unit compressive strength of concrete with silica fume decreases with increase of silica fume content; CLE per unit compressive strength of concrete with air content increase when air content increase.


2019 ◽  
Vol 25 (5) ◽  
pp. 79-86 ◽  
Author(s):  
Ziwar Zebari

This study aims to find the effect of water-cement ratio on the compressive strength of concrete by using ultrasonic pulse velocity test (UPVT). Over 230 standard cube specimens were used in this study, with dimensions of 150mm, and concrete cubes were cured in water at 20 °C. Also, the specimens used in the study were made of concrete with varied water-cement ratio contents from 0.48 to 0.59. The specimens were taken from Diyarbakir-Turkey concrete centers and tested at the structure and material science lab, civil engineering, faculty of engineering from Dicle University.  The UPV measurement and compressive strength tests were carried out at the concrete age of 28 days. Their UPV and compressive strength ranged between (3.89-4.66km/s) and (17.74-40.56MPa) respectively. The experimental results showed that although the UPV and the compressive strength of concrete are related, also, the UPV and compressive strength have a relation with the rate of the water-cement ratio of concrete.  


Sign in / Sign up

Export Citation Format

Share Document