Effect of Water Reducer and Cellulose Ether on Sulphoaluminate Cement-Based Lightweight Thermal Insulation Board

2014 ◽  
Vol 541-542 ◽  
pp. 273-276
Author(s):  
Xiao Nan Dong ◽  
Xi Chen ◽  
Ling Chao Lu ◽  
Shuai Yang

The effects of two admixtures content i.e. water reducer, cellulose ether and water-cement ratio on mechanical strength and dry density of cement-based lightweight thermal insulation board are studied. The result indicates that the water-cement ratio is the important influential factor, which is easier to get good workability. And based on the mechanical strength and dry density, the best range of water reducer content and cellulose ether content are 0.3%-0.6% and 0.4%-0.6% respectively.

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3596 ◽  
Author(s):  
Xiuzhi Zhang ◽  
Qing Yang ◽  
Qinfei Li ◽  
Heng Chen ◽  
Guofa Zheng ◽  
...  

Foamed concrete materials based on sulpoaluminate cement were prepared by the chemical foaming method. The effects of water–cement ratio, foaming agent, and foaming stabilizer on the mechanical and thermal properties of foamed concrete were studied. Meanwhile, a portion of cement was replaced with foamed phenolic particles to further optimize the performance of foamed concrete; the results show that when the water–cement ratio was 0.53, the foaming agent content was 5%, the foam stabilizer was 1%, and the substitution of phenolic particles was 20%, the performance indexes of foamed concrete were the best. Methods, describing briefly the main methods or treatments applied: dry density was 278.4 kg/m3, water absorption was 19.9%, compressive strength was 3.01 MPa, and thermal conductivity was 0.072 W/(m·K). By the pore structure analysis of the foamed concrete suing Micro-CT, it was found that when the replacement amount of phenolic particles was 20%, the pore size of foamed concrete was relatively uniform, the minimum D90 was 225 μm respectively. The combination of organic and inorganic matrix and optimized pore structure improved the performance of foamed concrete.


2014 ◽  
Vol 629-630 ◽  
pp. 382-387
Author(s):  
Jing Li ◽  
Jun Zhang ◽  
Zhao Rong Hou ◽  
Sheng Wei Wu

The traditional mix proportion for concrete used in building field could not meet the requirements for industrialization production any more, and the optimization needs developing to obtain an ideal mix proportion for precast concrete with high early strength and good workability, as well as economy. To achieve the high early strength, Low-Alkalinity Sulphoaluminate Cement was selected, accompanied by Ordinary Portland Cement. The properties of other materials, namely aggregates (medium sand and gravel) and admixtures (polycarboxylate-based superplasticizer and sodium sulfate), were determined through literature review. The parameters of materials, such as the fineness modulus, mud-content of aggregates and cement strength, were determined. Besides, the range of water-cement ratio, admixture content and the ratio of two kinds of cements etc. in a total of 13 preliminary concrete mixes are analyzed. With further analysis, the four dominant factors were chosen, that is, water-cement ratio, cement content, superplasticizer content and sand ratio, leading to a series of orthogonal experiments with 3 levels of each factor. By analysis of test result data and consideration of cost, the optimized mix for precast concrete in building industrialization was carried out, of which the compressive strength in 10 hours reached the required strength and other properties reasonable.


Sign in / Sign up

Export Citation Format

Share Document