scholarly journals THE PREVALENCE OF NARROW OPTICAL Fe II EMISSION LINES IN TYPE 1 ACTIVE GALACTIC NUCLEI

2010 ◽  
Vol 721 (2) ◽  
pp. L143-L147 ◽  
Author(s):  
Xiao-Bo Dong ◽  
Luis C. Ho ◽  
Jian-Guo Wang ◽  
Ting-Gui Wang ◽  
Huiyuan Wang ◽  
...  
2021 ◽  
Vol 922 (2) ◽  
pp. 167
Author(s):  
Yechi Zhang ◽  
Masami Ouchi ◽  
Karl Gebhardt ◽  
Erin Mentuch Cooper ◽  
Chenxu Liu ◽  
...  

Abstract We present Lyα and ultraviolet (UV)-continuum luminosity functions (LFs) of galaxies and active galactic nuclei (AGNs) at z = 2.0–3.5 determined by the untargeted optical spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). We combine deep Subaru imaging with HETDEX spectra resulting in 11.4 deg2 of fiber spectra sky coverage, obtaining 18,320 galaxies spectroscopically identified with Lyα emission, 2126 of which host type 1 AGNs showing broad (FWHM > 1000 km s−1) Lyα emission lines. We derive the Lyα (UV) LF over 2 orders of magnitude covering bright galaxies and AGNs in log L Ly α / [ erg s − 1 ] = 43.3 – 45.5 (−27 < M UV < −20) by the 1/V max estimator. Our results reveal that the bright-end hump of the Lyα LF is composed of type 1 AGNs. In conjunction with previous spectroscopic results at the faint end, we measure a slope of the best-fit Schechter function to be α Sch = − 1.70 − 0.14 + 0.13 , which indicates that α Sch steepens from z = 2–3 toward high redshift. Our UV LF agrees well with previous AGN UV LFs and extends to faint-AGN and bright-galaxy regimes. The number fraction of Lyα-emitting objects (X LAE) increases from M UV * ∼ − 21 to bright magnitude due to the contribution of type 1 AGNs, while previous studies claim that X Lyα decreases from faint magnitudes to M UV * , suggesting a valley in the X Lyα –magnitude relation at M UV * . Comparing our UV LF of type 1 AGNs at z = 2–3 with those at z = 0, we find that the number density of faint (M UV > −21) type 1 AGNs increases from z ∼ 2 to 0, as opposed to the evolution of bright (M UV < −21) type 1 AGNs, suggesting AGN downsizing in the rest-frame UV luminosity.


2014 ◽  
Vol 54 (7) ◽  
pp. 1382-1388 ◽  
Author(s):  
G. La Mura ◽  
M. Berton ◽  
S. Ciroi ◽  
V. Cracco ◽  
F. Di Mille ◽  
...  

Atoms ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 94
Author(s):  
Paola Marziani ◽  
Ascension del Olmo ◽  
Jaime Perea ◽  
Mauro D’Onofrio ◽  
Swayamtrupta Panda

This paper reviews several basic emission properties of the UV emission lines observed in the spectra of quasars and type-1 active galactic nuclei, mainly as a function of the ionization parameter, metallicity, and density of the emitting gas. The analysis exploits a general-purpose 4D array of the photoionization simulations computed using the code CLOUDY, covering ionization parameter in the range 10−4.5–10+1.0, hydrogen density nH∼107–1014 cm−3, metallicity Z between 0.01 and 100 Z⊙, and column density in the range 1021–1023 cm−2. The focus is on the most prominent UV emission lines observed in quasar spectra, namely Nvλ1240, Siivλ1397, Oiv]λ1402, Civλ1549, Heiiλ1640, Aliiiλ1860, Siiii]λ1892, and Ciii]λ1909, and on the physical conditions under which electron-ion impact excitation is predicted to be the dominant line producer. Photoionization simulations help constrain the physical interpretation and the domain of applicability of spectral diagnostics derived from measurements of emission line ratios, reputed to be important for estimating the ionization degree, density, and metallicity of the broad line emitting gas, as well as the relative intensity ratios of the doublet or multiplet components relevant for empirical spectral modeling.


2021 ◽  
Vol 507 (4) ◽  
pp. 5205-5213
Author(s):  
XueGuang Zhang

ABSTRACT In this manuscript, an interesting blue active galactic nuclei (AGNs) SDSS J154751.94+025550 (=SDSS J1547) is reported with very different line profiles of broad Balmer emission lines: double-peaked broad H β but single-peaked broad H α. SDSS J1547 is the first AGN with detailed discussions on very different line profiles of the broad Balmer emission lines, besides the simply mentioned different broad lines in the candidate for a binary black hole (BBH) system in SDSS J0159+0105. The very different line profiles of the broad Balmer emission lines can be well explained by different physical conditions to two central BLRs in a central BBH system in SDSS J1547. Furthermore, the long-term light curve from CSS can be well described by a sinusoidal function with a periodicity about 2159 d, providing further evidence to support the expected central BBH system in SDSS J1547. Therefore, it is interesting to treat different line profiles of broad Balmer emission lines as intrinsic indicators of central BBH systems in broad line AGN. Under assumptions of BBH systems, 0.125 per cent of broad-line AGN can be expected to have very different line profiles of broad Balmer emission lines. Future study on more broad line AGN with very different line profiles of broad Balmer emission lines could provide further clues on the different line profiles of broad Balmer emission lines as indicator of BBH systems.


2019 ◽  
Vol 15 (S352) ◽  
pp. 121-122
Author(s):  
A. Plat ◽  
S. Charlot ◽  
G. Bruzual ◽  
A. Feltre ◽  
A. Vidal-Garca ◽  
...  

AbstractTo understand how the nature of the ionizing sources and the leakage of ionizing photons in high-redshift galaxies can be constrained from their emission-line spectra, we compare emission-line models of star-forming galaxies including leakage of ionizing radiation, active galactic nuclei (AGN) and radiative shocks, with observations of galaxies at various redshifts with properties expected to approach those of primeval galaxies.


2021 ◽  
Vol 162 (6) ◽  
pp. 276
Author(s):  
Yang-Wei Zhang ◽  
Yang Huang ◽  
Jin-Ming Bai ◽  
Xiao-Wei Liu ◽  
Jian-guo Wang ◽  
...  

Abstract As the third installment in a series systematically searching dual active galactic nuclei (AGN) among merging galaxies, we present the results of 20 dual AGNs found by using the SDSS fiber spectra. To reduce the flux contamination from both the fiber aperture and seeing effects, the angular separation of two cores in our merging galaxy pairs sample is restricted at least larger than 3″. By careful analysis of the emission lines, 20 dual AGNs are identified from 61 merging galaxies with their two cores both observed by the SDSS spectroscopic surveys. 15 of them are identified for the first time. The identification efficiency is about 32.79% (20/61), comparable to our former results (16 dual AGNs identified from 41 merging galaxies) based on the long-slit spectroscopy. Interestingly, two of the 20 dual AGNs show two prominent cores in radio images and their radio powers show they as the radio-excess AGNs. So far, 31 dual AGNs are found by our project and this is the current largest dual AGN sample, ever constructed with a consistent approach. This sample, together with more candidates from ongoing observations, is of vital importance to study the AGN physics and the coevolution between the supermassive black holes and their host galaxies.


2014 ◽  
Vol 790 (1) ◽  
pp. 15 ◽  
Author(s):  
L. Sargsyan ◽  
A. Samsonyan ◽  
V. Lebouteiller ◽  
D. Weedman ◽  
D. Barry ◽  
...  

1989 ◽  
Vol 134 ◽  
pp. 316-317
Author(s):  
S.M. Viegas-Aldrovandi ◽  
M. Contini

In the last decade, emission-lines from a large number of active galactic nuclei (AGN) have been observed. Most of the models built to explain the observed narrow emission-lines are based on photoionization. Although these photoionization models account for the observed general features, many points remain unexplained and several authors suggest an additional energy source (Ferland and Mushotzky 1984, Ferland and Osterbrock 1986, Stasinska 1984, Viegas-Aldrovandi and Gruenwald 1988). Another possible explanation is suggested by the emitting cloud motions, which account for the observed line widths. If the clouds are moving throughout a dilute gas (n0 ≃ 300 cm−3), a shock can develop. Then, the physical conditions in the cloud are determined by the coupled effect of photoionization and shock hydrodynamics.


2020 ◽  
Vol 6 (27) ◽  
pp. eaay9711 ◽  
Author(s):  
D. Krishnarao ◽  
R. A. Benjamin ◽  
L. M. Haffner

Optical emission lines are used to categorize galaxies into three groups according to their dominant central radiation source: active galactic nuclei, star formation, or low-ionization (nuclear) emission regions [LI(N)ERs] that may trace ionizing radiation from older stellar populations. Using the Wisconsin H-Alpha Mapper, we detect optical line emission in low-extinction windows within eight degrees of Galactic Center. The emission is associated with the 1.5-kiloparsec-radius “Tilted Disk” of neutral gas. We modify a model of this disk and find that the hydrogen gas observed is at least 48% ionized. The ratio [NII] λ6584 angstroms/Hα λ6563 angstroms increases from 0.3 to 2.5 with Galactocentric radius; [OIII] λ5007 angstroms and Hβ λ4861 angstroms are also sometimes detected. The line ratios for most Tilted Disk sightlines are characteristic of LI(N)ER galaxies.


Sign in / Sign up

Export Citation Format

Share Document