scholarly journals The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

2014 ◽  
Vol 54 (7) ◽  
pp. 1382-1388 ◽  
Author(s):  
G. La Mura ◽  
M. Berton ◽  
S. Ciroi ◽  
V. Cracco ◽  
F. Di Mille ◽  
...  
2020 ◽  
Vol 6 (27) ◽  
pp. eaay9711 ◽  
Author(s):  
D. Krishnarao ◽  
R. A. Benjamin ◽  
L. M. Haffner

Optical emission lines are used to categorize galaxies into three groups according to their dominant central radiation source: active galactic nuclei, star formation, or low-ionization (nuclear) emission regions [LI(N)ERs] that may trace ionizing radiation from older stellar populations. Using the Wisconsin H-Alpha Mapper, we detect optical line emission in low-extinction windows within eight degrees of Galactic Center. The emission is associated with the 1.5-kiloparsec-radius “Tilted Disk” of neutral gas. We modify a model of this disk and find that the hydrogen gas observed is at least 48% ionized. The ratio [NII] λ6584 angstroms/Hα λ6563 angstroms increases from 0.3 to 2.5 with Galactocentric radius; [OIII] λ5007 angstroms and Hβ λ4861 angstroms are also sometimes detected. The line ratios for most Tilted Disk sightlines are characteristic of LI(N)ER galaxies.


2011 ◽  
Vol 20 (3) ◽  
pp. 442-447
Author(s):  
G. La Mura ◽  
S. Ciroi ◽  
V. Cracco ◽  
D. Ilić ◽  
L. Č. Popović ◽  
...  

Abstract In this contribution we report on the study of the optical emission lines and X-ray spectra of a sample of Type 1 AGNs, collected from the SDSS database and observed by the XMM-Newton satellite. Using different instruments onboard XMM, we identify the spectral components of the soft and hard energy bands (in the range from 0.3 keV to 10 keV). The properties of the X-ray continuum and of the Fe Kα line feature are related to the optical broad emission line profiles and intensity ratios. The resulting picture of emission, absorption and reflection processes is interpreted by means of a structural model of the broad line region, developed on the basis of independent optical and radio observations.


2020 ◽  
Vol 493 (1) ◽  
pp. 930-939 ◽  
Author(s):  
Gunnar W Jaffarian ◽  
C Martin Gaskell

ABSTRACT We present a large compilation of reddening estimates from broad-line Balmer decrements for active galactic nuclei (AGNs) with measured X-ray column densities. The median reddening is E(B − V) ≈ 0.77 ± 0.10 for type-1 to type-1.9 AGNs with reported column densities. This is notably higher than the median reddening of AGNs from the SDSS. We attribute this to the selection bias of the SDSS towards blue AGNs. For other AGNs, we find evidence of a publication bias against reporting low column densities. We find a significant correlation between NH and E(B − V) but with a large scatter of ±1 dex. On average, the X-ray columns are consistent with those predicted from E(B − V) for a solar neighbourhood dust-to-gas ratio. We argue that the large scatter of column densities and reddenings can be explained by X-ray column density variability. For AGNs with detectable broad-line regions (BLRs) that have undergone significant changes of Seyfert type (‘changing-look’ AGNs), we do not find any statistically significant differences in NH or E(B − V) compared to standard type-1 to type-1.9 AGNs. There is no evidence for any type-1 AGNs being Compton thick. We also analyse type-2 AGNs and find no significant correlation between NH and narrow-line region reddening. We find no evidence for a previously claimed anticorrelation. The median column density of LINERs is 22.68 ± 0.75 compared to a column density of 22.90 ± 0.28 for type-2 AGNs. We find the majority of low column density type-2 AGNs are LINERs, but NH is probably underestimated because of scattered light.


2003 ◽  
Vol 403 (1) ◽  
pp. 29-41 ◽  
Author(s):  
A. Čadež ◽  
M. Brajnik ◽  
A. Gomboc ◽  
M. Calvani ◽  
C. Fanton

2019 ◽  
Vol 631 ◽  
pp. A120 ◽  
Author(s):  
F. Salvestrini ◽  
G. Risaliti ◽  
S. Bisogni ◽  
E. Lusso ◽  
C. Vignali

A tight non-linear relation between the X-ray and the optical-ultraviolet (UV) emission has been observed in active galactic nuclei (AGN) over a wide range of redshift and several orders of magnitude in luminosity, suggesting the existence of an ubiquitous physical mechanism regulating the energy transfer between the accretion disc and the X-ray emitting corona. Recently, our group developed a method to use this relation in observational cosmology, turning quasars into standardizable candles. This work mainly seeks to investigate the potential evolution of this correction at high redshifts. We thus studied the LX − LUV relation for a sample of quasars in the redshift range 4 <  z <  7, adopting the selection criteria proposed in our previous work regarding their spectral properties. The resulting sample consists of 53 type 1 (unobscured) quasars, observed either with Chandra or XMM-Newton, for which we performed a full spectral analysis, determining the rest-frame 2 keV flux density, as well as more general X-ray properties such as the estimate of photon index, and the soft (0.5–2 keV) and hard (2–10 keV) unabsorbed luminosities. We find that the relation shows no evidence for evolution with redshift. The intrinsic dispersion of the LX–LUV for a sample free of systematics/contaminants is of the order of 0.22 dex, which is consistent with previous estimates from our group on quasars at lower redshift.


2017 ◽  
Vol 469 (1) ◽  
pp. 110-126 ◽  
Author(s):  
I. García-Bernete ◽  
C. Ramos Almeida ◽  
H. Landt ◽  
M. J. Ward ◽  
M. Baloković ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document