Tribological characteristics of mahua oil with graphene nanoplatelets as anti-wear and extreme pressure additive

2021 ◽  
Vol 9 (4) ◽  
pp. 045008
Author(s):  
B Suresha ◽  
G Hemanth ◽  
Anantha Padmanabha ◽  
S Ishwara Prasanna ◽  
Giriraj Kulkarni ◽  
...  
2020 ◽  
Vol 98 (4) ◽  
pp. 6-12
Author(s):  
A. Kravtsov ◽  

The paper presents experimental studies of the tribological characteristics of liquid lubricants of various viscosity classes and various groups of operation when using fullerene compositions. Tribological characteristics were evaluated on a four-ball friction machine according to GOST 9490. The use of fullerene compositions in the form of a finely dispersed fullerene powder, pre-dispersed (dissolved) in vegetable high oleic oils, for example, rapeseed, with the subsequent addition of the resulting composition to technical oils of various viscosity classes and various groups of operation, leads to the following positive effect. The anti-wear properties of oils, which are assessed by the wear indicator, increase by 20,0…30,7 %, and the critical load on 18,8…25,0%. These indicators significantly exceed similar indicators when using fullerene fine powders without preliminary dispersion in vegetable oils, where the effect is on the border 11,1…15 %. Fullerene additives do not affect the extreme pressure properties of base oils, which are assessed by the scuffing load. This result makes it possible to state that the way to improve the tribological properties of lubricants by introducing a fine powder of fullerenes into base technical oils is ineffective. The experimental results obtained confirm the hypothesis about the possibility of the micelle formation mechanism in the lubricant under the action of the electrostatic field of the friction surface. The presence of a surfactant solvent (vegetable oil) allows you to "start" the micelle formation process at lower fullerene concentrations and to obtain the effect of increasing anti-wear properties.


2020 ◽  
Vol 25 ◽  
pp. 724-728
Author(s):  
Aadesh Rajendra Surana ◽  
Yashvir Singh ◽  
Virwal Harsh Rajubhai ◽  
Ketan Suthar ◽  
Abhishek Sharma

2006 ◽  
Vol 58 (3) ◽  
pp. 145-150 ◽  
Author(s):  
Xisheng Fu ◽  
Heyang Shao ◽  
Tianhui Ren ◽  
Weimin Liu ◽  
Qunji Xue

2019 ◽  
pp. 146808741989099
Author(s):  
Danish Syed ◽  
MF Wani

This article reports tribological studies of piston ring/cylinder liner tribo-contact to evaluate the scuffing failure under dry sliding conditions and its minimization with mild extreme pressure lubrication. The tribological conjugation tested employs a piston ring of SAE9254 grade steel substrate with plasma-sprayed chromium coating of 42 µm and ISO R185220 grade gray cast iron cylinder liner. A conformal, cylinder inscribed in cylindrical cavity contact was ensured to simulate actual dead center reciprocating between piston ring–cylinder liner interface. Tribotests were conducted under dry sliding, simulating lubrication starvation and sliding in extreme pressure additivation blend at a temperature of 200 °C with 10 mm stroke length and reciprocating velocity of 0.2 m s–1. The friction characteristics of the piston ring and cylinder liner samples in cited test conditions were studied as a function of load and continuously monitored throughout the tests. Optimal profilometry was employed for evaluating wear attributes. For surface morphology and allied surface characterization, energy-dispersive X-ray spectroscopy integrated scanning electron microscopy was used. For tribo-chemical interactions and film formation, the tribo-surfaces were further investigated with Raman spectroscopy. ASTM E-384 standard Vickers indentation microhardness and its precedence to tribological characteristics were evaluated. The extreme pressure lubrication is intended to potentially improve the scuffing résistance and optimization of coating material in achieving superior tribological characteristics. Superior lubricity, scuffing resistance and enhanced load-bearing capacity attributes were manifested by EP-PAO10 blend lubrication contrasting the surface deteriorations and scuffing failure ascribed to dry sliding.


2018 ◽  
Vol 70 (5) ◽  
pp. 888-901 ◽  
Author(s):  
Rehan Zahid ◽  
Masjuki Hj. Hassan ◽  
Abdullah Alabdulkarem ◽  
Mahendra Varman ◽  
Md. Abul Kalam ◽  
...  

Purpose There is a continuous drive in automotive sector to shift from conventional lubricants to environmental friendly ones without adversely affecting critical tribological performance parameters. Because of their favorable tribological properties, chemically modified vegetable oils such as palm trimethylolpropane ester (TMP) are one of the potential candidates for the said role. To prove the suitability of TMP for applications involving boundary-lubrication regime such as cam/tappet interface of direct acting valve train system, a logical step forward is to investigate their compatibility with conventional lubricant additives. Design/methodology/approach In this study, extreme pressure and tribological characteristics of TMP, formulated with glycerol mono-oleate (GMO), molybdenum dithiocarbamate (MoDTC) and zinc dialkyldithiophosphate (ZDDP), has been investigated using four-ball wear tester and valve train test rig. For comparison, additive-free and formulated versions of polyalphaolefin (PAO) were used as reference. Moreover, various surface characterization techniques were deployed to investigate mechanisms responsible for a particular tribological behavior. Findings In additive-free form, TMP demonstrated better extreme pressure characteristics compared to PAO and lubricant additives which are actually optimized for conventional base-oils such as PAO, are also proved to be compatible with TMP to some extent, especially ZDDP. During cylinder head tests, additive-free TMP proved to be more effective compared to PAO in reducing friction of cam/tappet interface, but opposite behavior was seen when formulated lubricants were used. Therefore, there is a need to synthesize specialized friction modifiers, anti-wear and extreme pressure additives for TMP before using it as engine lubricant base-oil. Originality/value In this study, additive-free and formulated versions of bio-lubricant are tested for cam/tappet interface of direct acting valve train system of commercial passenger car diesel engine for the very test time. Another important aspect of this research was comparison of important tribological performance parameters (friction torque, wear, rotational speed of tappet) of TMP-based lubricants with conventional lubricant base oil, that is, PAO and its formulated version.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
B. Suresha ◽  
G. Hemanth ◽  
Apurva Rakesh ◽  
K. M. Adarsh

The present work was aimed to study the friction and wear behaviour of graphene nanoplatelets (GNPs) under extreme pressure conditions as an anti-weld additive for neem oil. The effect of neem oil, blended with various loading of GNPs on the friction and wear characteristics has been investigated. From the experimental results, it was found that 1 wt.% of GNPs in neem oil showed the least coefficient of friction and smoother wear scar diameter. The extreme pressure test was performed on neem oil with and without GNPs as per ASTM standards. The extreme pressure test results indicated the improvement in seizure load of neem oil by 27.8% at 0.5 wt.% of GNPs as compared to pure neem oil. Optical microscopy of worn steel ball surface revealed the pit formation and the formation of wedge cutting edge in GNPs modified neem oil.


2020 ◽  
Vol 86 (4) ◽  
pp. 61-65
Author(s):  
M. V. Abramchuk ◽  
R. V. Pechenko ◽  
K. A. Nuzhdin ◽  
V. M. Musalimov

A reciprocating friction machine Tribal-T intended for automated quality control of the rubbing surfaces of tribopairs is described. The distinctive feature of the machine consists in implementation of the forced relative motion due to the frictional interaction of the rubbing surfaces fixed on the drive and conjugate platforms. Continuous processing of the signals from displacement sensors is carried out under conditions of continuous recording of mutual displacements of loaded tribopairs using classical approaches of the theory of automatic control to identify the tribological characteristics. The machine provides consistent visual real time monitoring of the parameters. The MATLAB based computer technologies are actively used in data processing. The calculated tribological characteristics of materials, i.e., the dynamic friction coefficient, damping coefficient and measure of the surface roughness, are presented. The tests revealed that a Tribal-T reciprocating friction machine is effective for real-time study of the aforementioned tribological characteristics of materials and can be used for monitoring of the condition of tribo-nodes of machines and mechanisms.


Sign in / Sign up

Export Citation Format

Share Document