scholarly journals The investigation on structural, optical and morphological behavior of pure and co-doped TiO2 nanoparticles developed via sol-gel approach for biological activity

2020 ◽  
Vol 6 (12) ◽  
pp. 1250k1
Author(s):  
K Manikandan ◽  
A Thirugnanasundar ◽  
Jafar Ahamed A
Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


2018 ◽  
Vol 29 (14) ◽  
pp. 12351-12359 ◽  
Author(s):  
Behzad Koozegar Kaleji ◽  
Sajad Mirzaee ◽  
Soroush Ghahramani ◽  
Saba Rezaie ◽  
Navid Hosseinabadi ◽  
...  

2012 ◽  
Vol 12 (2) ◽  
pp. 950-954 ◽  
Author(s):  
Masoud Karimipour ◽  
J. Magnus Wikberg ◽  
Nasser Shahtahmasebi ◽  
Mahmood Rezaee Rokn Abad ◽  
M. M. Bagheri-Mohagheghi ◽  
...  

Author(s):  
Chelaramani K. ◽  
Varshney R. ◽  
Bhardwaj A.

The TiO2 and Ag and Zn doped TiO2 nanoparticles were synthesized by sol-gel method.The sol-gel method is one of the versatile method to prepare doped and co-doped nanoparticles. sol gel method has emerged as simpler and better option than physical and chemical procedures as it is fast, clean and eco-friendly alternative that does not involve any costly instruments .Synthesis of doped and co-doped nanoparticles having good photocatalytic activity have great potential for the degradation of dye. We have tried to develop new effective antimicrobial reagents with good photocatalytic activities which are not resistant to disease causing microbes.


2015 ◽  
Vol 26 ◽  
pp. 281-292 ◽  
Author(s):  
Hamed Eskandarloo ◽  
Alireza Badiei ◽  
Mohammad A. Behnajady ◽  
Ghodsi Mohammadi Ziarani

Sign in / Sign up

Export Citation Format

Share Document