scholarly journals First-principles calculation of the effect of Ti content on the structure and properties of TiVNbMo refractory high-entropy alloy

2020 ◽  
Vol 7 (10) ◽  
pp. 106516
Author(s):  
Lin Chen ◽  
Xuanhong Hao ◽  
Yueyi Wang ◽  
Xiaowei Zhang ◽  
Hongxi Liu
Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2209 ◽  
Author(s):  
Xinyang Wang ◽  
Qian Liu ◽  
Yanbin Huang ◽  
Lu Xie ◽  
Quan Xu ◽  
...  

In this paper, CoCrFeNiTix high entropy alloy (HEA) coatings were prepared on the surface of Q235 steel by laser cladding. The microstructure, microhardness, and corrosion resistance of the coatings were studied. The mechanism of their corrosion resistance was elucidated experimentally and by first-principles calculations. The results show that CoCrFeNiTi0.1 adopts a face-centered cubic (FCC) phase, CoCrFeNiTi0.3 exhibits an FCC phase and a tetragonal FeCr phase, and CoCrFeNiTi0.5 adopts an FCC phase, a tetragonal FeCr phase, and a rhombohedral NiTi phase. The FCC phase, tetragonal FeCr phase, rhombohedral NiTi phase, and hexagonal CoTi phase are all observed in the CoCrFeNiTi0.7 HEA. The alloys assume the dendritic structure that is typical of HEAs. Ni and Ti are enriched in the interdendritic regions, whereas Cr and Fe are enriched in the dendrites. With increasing Ti content, the hardness of the cladding layers also increases due to the combined effects of lattice distortion and dispersion strengthening. When exposed to a 3.5 wt.% NaCl solution, pitting corrosion is the main form of corrosion on the CoCrFeNiTix HEA surfaces. The corrosion current densities of CoCrFeNiTix HEAs are much lower than those of other HEAs. As the Ti content increases, the corrosion resistance is improved. Through X-ray photoelectron spectroscopy (XPS) and first-principles calculations, the origin of the higher corrosion resistance of the coatings is connected to the presence of a dense passivation film. In summary, the corrosion resistance and mechanical properties of CoCrFeNiTi0.5 alloy are much better than the other three groups, which promotes the development of HEA systems with high value for industrial application.


2021 ◽  
pp. 117582
Author(s):  
Shu-Ming Chen ◽  
Ze-Jun Ma ◽  
Shi Qiu ◽  
Lian-Ji Zhang ◽  
Shang-Zhou Zhang ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 965 ◽  
Author(s):  
Shumin Zheng ◽  
Shaoqing Wang

The elastic properties of seventy different compositions were calculated to optimize the composition of a V–Mo–Nb–Ta–W system. A new model called maximum entropy approach (MaxEnt) was adopted. The influence of each element was discussed. Molybdenum (Mo) and tungsten (W) are key elements for the maintenance of elastic properties. The V–Mo–Nb–Ta–W system has relatively high values of C44, bulk modulus (B), shear modulus (G), and Young’s modulus (E), with high concentrations of Mo + W. Element W is brittle and has high density. Thus, low-density Mo can substitute part of W. Vanadium (V) has low density and plays an important role in decreasing the brittleness of the V–Mo–Nb–Ta–W system. Niobium (Nb) and tantalum (Ta) have relatively small influence on elastic properties. Furthermore, the calculated results can be used as a general guidance for the selection of a V–Mo–Nb–Ta–W system.


Sign in / Sign up

Export Citation Format

Share Document