scholarly journals Fabry-Perot interference pattern scattered by a sub-monolayer array of nanoparticles

Author(s):  
Richard Osgood ◽  
Yassine Ait-El-Aoud ◽  
Katherine Bullion ◽  
Sean Dinneen ◽  
Richard Kingsborough ◽  
...  

Abstract Understanding scattering of visible and infrared photons from nanomaterials and nanostructured materials is increasingly important for imaging, thermal management, and detection, and has implications for other parts of the electromagnetic spectrum (e.g., x-ray scattering and radar). New, interesting reports of photon scattering as a diagnostic probe, from inelastic x-ray scattering and interference to “nano-FTIR” microscopy using infrared photons, have been published and are under active investigation in laboratories around the world. Here, we report, for the first time to our best knowledge, the experimental discovery of a Fabry-Perot interference pattern that is scattered by the sub-monolayer array of plasmonic Ag nanoparticles, and confirm it analytically and with rigorous numerical FDTD simulations.

2020 ◽  
Vol 11 (28) ◽  
pp. 4630-4638 ◽  
Author(s):  
Li Xiang ◽  
Wonyeong Ryu ◽  
Jehan Kim ◽  
Moonhor Ree

Quantitative grazing incidence X-ray scattering analysis combined with X-ray reflectivity using synchrotron radiation sources was explored for the first time cyclic topology effects on the nanoscale film morphology of poly(ε-caprolactone).


2008 ◽  
Vol 72 (1) ◽  
pp. 159-162 ◽  
Author(s):  
I. A. M. Ahmed ◽  
S. Shaw ◽  
L. G. Benning

AbstractThe formation and transformation of hydroxysulphate (GRSO4) and hydroxycarbonate (GRCO3) Green Rusts were studied in situ using synchrotron-based time-resolved small and wide angle X-ray scattering. The time-resolved data revealed, for the first time, the pH dependent transition from poorly-ordered schwertmannite (pH <6.5) into GRSO4 (pH ~6.8) followed by GRCO3 (at pH ~9.6). These data also showed that the addition of Zn to the starting sulphate Fe2+/Fe3+ solution resulted in a change in size of the GR unit-cell due to substitution of Zn into the GR structure.


2015 ◽  
Vol 71 (12) ◽  
pp. 2372-2385 ◽  
Author(s):  
Alessandra Del Giudice ◽  
Nicolae Viorel Pavel ◽  
Luciano Galantini ◽  
Giuseppe Falini ◽  
Paolo Trost ◽  
...  

Oxygenic photosynthetic organisms produce sugars through the Calvin–Benson cycle, a metabolism that is tightly linked to the light reactions of photosynthesis and is regulated by different mechanisms, including the formation of protein complexes. Two enzymes of the cycle, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK), form a supramolecular complex with the regulatory protein CP12 with the formula (GAPDH–CP122–PRK)2, in which both enzyme activities are transiently inhibited during the night. Small-angle X-ray scattering analysis performed on both the GAPDH–CP12–PRK complex and its components, GAPDH–CP12 and PRK, fromArabidopsis thalianashowed that (i) PRK has an elongated, bent and screwed shape, (ii) the oxidized N-terminal region of CP12 that is not embedded in the GAPDH–CP12 complex prefers a compact conformation and (iii) the interaction of PRK with the N-terminal region of CP12 favours the approach of two GAPDH tetramers. The interaction between the GAPDH tetramers may contribute to the overall stabilization of the GAPDH–CP12–PRK complex, the structure of which is presented here for the first time.


RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12326-12336 ◽  
Author(s):  
Mala Mukhopadhyay ◽  
S. Hazra

Formation of 2D-networked structures of disk-like islands for ultrathin Langmuir–Schaefer (LS) films of thiol-coated Au-nanoparticles (DT-AuNPs) on H-passivated Si substrates is evidenced for the first time, by X-ray scattering data and AFM images.


Soft Matter ◽  
2014 ◽  
Vol 10 (38) ◽  
pp. 7606-7614 ◽  
Author(s):  
Kuo-Chih Shih ◽  
Chi-Yen Li ◽  
Wen-Hsien Li ◽  
Hsi-Mei Lai

The evolution of the fine structures of self-assembled polypseudorotaxane (PPR) in Pluronic (PL F108) solutions containing dilute to dense beta-cyclodextrin (β-CD) was illustrated for the first time by small angle X-ray scattering (SAXS).


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Eva-Maria Mandelkow ◽  
Ron Milligan

Microtubules form part of the cytoskeleton of eukaryotic cells. They are hollow libers of about 25 nm diameter made up of 13 protofilaments, each of which consists of a chain of heterodimers of α-and β-tubulin. Microtubules can be assembled in vitro at 37°C in the presence of GTP which is hydrolyzed during the reaction, and they are disassembled at 4°C. In contrast to most other polymers microtubules show the behavior of “dynamic instability”, i.e. they can switch between phases of growth and phases of shrinkage, even at an overall steady state [1]. In certain conditions an entire solution can be synchronized, leading to autonomous oscillations in the degree of assembly which can be observed by X-ray scattering (Fig. 1), light scattering, or electron microscopy [2-5]. In addition such solutions are capable of generating spontaneous spatial patterns [6].In an earlier study we have analyzed the structure of microtubules and their cold-induced disassembly by cryo-EM [7]. One result was that disassembly takes place by loss of protofilament fragments (tubulin oligomers) which fray apart at the microtubule ends. We also looked at microtubule oscillations by time-resolved X-ray scattering and proposed a reaction scheme [4] which involves a cyclic interconversion of tubulin, microtubules, and oligomers (Fig. 2). The present study was undertaken to answer two questions: (a) What is the nature of the oscillations as seen by time-resolved cryo-EM? (b) Do microtubules disassemble by fraying protofilament fragments during oscillations at 37°C?


1992 ◽  
Vol 2 (6) ◽  
pp. 899-913 ◽  
Author(s):  
Patrick Davidson ◽  
Elisabeth Dubois-Violette ◽  
Anne-Marie Levelut ◽  
Brigitte Pansu

1996 ◽  
Vol 6 (8) ◽  
pp. 1085-1094 ◽  
Author(s):  
A. Gibaud ◽  
J. Wang ◽  
M. Tolan ◽  
G. Vignaud ◽  
S. K. Sinha

2002 ◽  
Vol 12 (6) ◽  
pp. 385-390 ◽  
Author(s):  
J.-F. Bérar ◽  
L. Blanquart ◽  
N. Boudet ◽  
P. Breugnon ◽  
B. Caillot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document