structural assembly
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 41)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 73 ◽  
pp. 102237
Author(s):  
Kleber Roberto da Silva Santos ◽  
Emília Villani ◽  
Wesley Rodrigues de Oliveira ◽  
Augusto Dttman

2021 ◽  
Vol 71 (2) ◽  
pp. 221-238
Author(s):  
Reddy Sreenivasulu ◽  
Chalamalasetti Srinivasarao

Abstract In the present work to validate the experimental results as per Taguchi based grey relational analysis by considering L27 orthogonal array corresponding to five factors with three levels and obtained optimal combination of input parameters to minimize the output responses during drilling process which is most important finishing operation required in the structural assembly works where we found application of Al-Mg-Si alloys, Deform-3D software is implemented and found good feasibility with that of experimental results.


2021 ◽  
Author(s):  
Neethu Puthumadathil ◽  
Greeshma S Nair ◽  
Smrithi R Krishnan ◽  
Kozhinjampara R Mahendran

AbstractMembrane-active pore-forming alpha-helical peptides and proteins are well known for their dynamic assembly mechanism and it has been critical to delineate the pore-forming structures in the membrane. Previously, attempts have been made to elucidate their assembly mechanism and there is a large gap due to complex pathways by which these membrane-active pores impart their effect. Here we demonstrate the multi-step structural assembly pathway of alpha-helical peptide pores formed by a 37 amino-acid synthetic peptide, pPorU based on the natural porin from Corynebacterium urealyticum using single-channel electrical recordings. More specifically, we report detectable intermediates states during membrane insertion and pore formation of pPorU. The fully assembled pore is functional and exhibited unusually large stable conductance and voltage-dependent gating, generally applicable to a range of pore-forming proteins. Furthermore, we used rationally designed mutants to understand the role of specific amino acids in the assembly of these peptide pores. Mutant peptides that differ from wild-type peptides produced noisy, unstable intermediate states and low conductance pores, demonstrating sequence specificity in the pore-formation process supported by molecular dynamics simulations. We suggest that our study contributes to understanding the mechanism of action of alpha-helical pores and antimicrobial peptides and should be of broad interest to bioengineers to build peptide-based nanopore sensors.


2021 ◽  
Author(s):  
Zahraa Ali Kamaz ◽  
Haruna Isiyaku Umar ◽  
Parth Doshi ◽  
Praveenya Suri

AbstractBackgroundAntimicrobial resistance is considered a major concern problem; bacteria have evolved mechanisms to overcome antibiotics’ action through evolutionary process. One main resistance mechanism that bacteria developed is the pumping of the antibiotics out of bacterial cells by transmembrane transporter proteins known as efflux pumps.Materials and methodsTo overcome bacterial resistance guided by efflux pumps, efflux pumps inhibitors (EPIs) are small molecules that obstruct efflux pumps binding sites and its structural assembly leading to disability in the efflux pumps normal function, new EPIs which under the current study are created by modifying the chemical structure of most common antibiotics including Ampicillin, Penicillin, Chloramphenicol, Ciprofloxacin and Tetracycline, such antibiotics are modified by adding N-acetyl glucose amine moiety to acceptor OH group of the respective antibiotic, the newly modified antibiotics are glycosylated EPIs. To test the effectiveness of the new EPIs in inhibiting AcrB-TolC and MexA-OprM efflux pumps functions, ADME properties for all of glycosylated antibiotics have been measured through applying Lipinski’s role of 5, docking and simulation studies have been included as well.ResultsDocked glycosylated tetracycline has given the highest binding energy in the active sites of both pumps, with −9.4 against AcrB and −8.8 against MexA. The simulation study has confirmed the binding of the glycosylated tetracycline in the active sites of both pumps, as well as its stability during the biological dynamicity of both pumps (opening and closing channels).ConclusionThe results validation requires a long simulation time about 50 ns or more which was un applicable due to cost limitation, however, the newly glycosylated antibiotics have promising results that might make it eligible as drug candidates to overcome bacterial resistance.


Author(s):  
Jonas O Wolff ◽  
Peter Michalik ◽  
Alexandra M Ravelo ◽  
Mariella E Herberstein ◽  
Martín J Ramírez

Synopsis Spider web anchors are attachment structures composed of the bi-phasic glue-fiber secretion from the piriform silk glands. The mechanical performance of the anchors strongly correlates with the structural assembly of the silk lines, which makes spider silk anchors an ideal system to study the biomechanical function of extended phenotypes and its evolution. It was proposed that silk anchor function guided the evolution of spider web architectures, but its fine-structural variation and whether its evolution was rather determined by changes of the shape of the spinneret tip or in the innate spinning choreography remained unresolved. Here, we comparatively studied the micro-structure of silk anchors across the spider tree of life, and set it in relation to spinneret morphology, spinning behavior and the ecology of the spider. We identified a number of apomorphies in the structure of silk anchors that may positively affect anchor function: (1) bundled dragline, (2) dragline envelope, and (3) dragline suspension (“bridge”). All these characters were apomorphic and evolved repeatedly in multiple lineages, supporting the notion that they are adaptive. The occurrence of these structural features can be explained with changes in the shape and mobility of the spinneret tip, the spinning behavior, or both. Spinneret shapes generally varied less than their fine-tuned movements, indicating that changes in construction behavior play a more important role in the evolution of silk anchor assembly. However, the morphology of the spinning apparatus is also a major constraint to the evolution of the spinning choreography. These results highlight the changes in behavior as the proximate and in morphology as the ultimate causes of extended phenotype evolution. Further, this research provides a roadmap for future bioprospecting research to design high-performance instant line anchors.


2021 ◽  
Vol 118 (8) ◽  
pp. e2022121118 ◽  
Author(s):  
Xiaoming Zhou ◽  
Yi Lin ◽  
Masato Kato ◽  
Eiichiro Mori ◽  
Glen Liszczak ◽  
...  

Low complexity (LC) head domains 92 and 108 residues in length are, respectively, required for assembly of neurofilament light (NFL) and desmin intermediate filaments (IFs). As studied in isolation, these IF head domains interconvert between states of conformational disorder and labile, β-strand–enriched polymers. Solid-state NMR (ss-NMR) spectroscopic studies of NFL and desmin head domain polymers reveal spectral patterns consistent with structural order. A combination of intein chemistry and segmental isotope labeling allowed preparation of fully assembled NFL and desmin IFs that could also be studied by ss-NMR. Assembled IFs revealed spectra overlapping with those observed for β-strand–enriched polymers formed from the isolated NFL and desmin head domains. Phosphorylation and disease-causing mutations reciprocally alter NFL and desmin head domain self-association yet commonly impede IF assembly. These observations show how facultative structural assembly of LC domains via labile, β-strand–enriched self-interactions may broadly influence cell morphology.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 514
Author(s):  
Bruno Silva Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barh ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 is the causal agent of the current coronavirus disease 2019 (COVID-19) pandemic. They are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly, and pathogenicity. The approximately 33.8 kDa Mpro protease of SARS-CoV-2 is a non-human homologue and is highly conserved among several coronaviruses, indicating that Mpro could be a potential drug target for Coronaviruses. Methods: Herein, we performed computational ligand screening of four pharmacophores (OEW, remdesivir, hydroxychloroquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7), and also screened 50,000 natural compounds from the ZINC Database dataset against this protease target. Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 11 best selected ligands, namely ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as beta-carboline, alkaloids, and polyflavonoids, and all displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as other known ligands. Conclusions: Our results suggest that these 11 molecules could be effective against SARS-CoV-2 protease and may be subsequently tested in vitro and in vivo to develop novel drugs against this virus.


2020 ◽  
Vol 16 (S9) ◽  
Author(s):  
Padraig Flannery Flannery ◽  
Nicholas Pichurin ◽  
Sergey Trushin ◽  
Eugenia Trushina

2020 ◽  
Vol 2 (12) ◽  
Author(s):  
Diane Davis-Sikora ◽  
Rui Liu ◽  
Linda Ohrn-McDaniel

AbstractBorn in art, the tensegrity logics have been advanced in disciplines from architecture and human anatomy. Biotensegrity principles introduce an adaptive, ‘living’ structural model characterized by networks of interconnected components and tendons with a shape adaptive capacity. Bending-active is an approach to form-force equilibria that adopts actively curving beams and surfaces within their elastic ranges. BeTA Pavilion explores the formal opportunities of biotensegrity logics using elastically bent glass fiber reinforced plastic rods and CNC knitted textiles. Its bending-active system (inspired by animal vertebrae typologies) is composed of prestressed and self-stabilized tetrahedron modules that are arrayed and sequenced to produce structural equilibrium with a bandwidth of dynamic motion. The paper details the iterative design process employing physical and computational modeling and testing for the new adaptive and dynamic structural assembly coupling bending-active textile hybrid with biotensegrity logics.


Sign in / Sign up

Export Citation Format

Share Document